Purpose: Single-cell RNA sequencing has revolutionized cell-type specific gene expression analysis. The goals of this study are to compare cell specific gene expression patterns between retinal cell types originating from the fovea and the periphery of human eyes. Methods: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Results: Independent libraries were prepared for foveal and peripheral samples of neural retina from three donors using the 10x Chromium system. Libraries were sequenced on a HiSeq4000. Sequenced reads were mapped to the human genome build hg19 will CellRanger(v3.0.1) and filters removed cells likely to be doublets or cells with a high proportion of mitochondrial reads. Clustering of cells with similar expression profiles was performed with Seurat (v2.3.4). Conclusions: Our study generates a large atlas of human retinal transcriptomes at the single cell level. We identified the majority of expected neural and supportive cell types, and describe regional differences in gene expression between the fovea and the periphery. Our results show that that single-cell RNA sequencing can be performed on human retina after cryopreservation, and that cone photoreceptors and Muller cells demonstrate region-specific patterns of gene expression. Overall design: mRNA profiles for thousands of cells from foveal and peripheral retinal isolates were generated from three human donor eyes using 10X Genomics Chromium single-cell system followed by sequencing on an Illumina HiSeq 4000.
Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing.
Subject
View SamplesToolsets available for in-depth analysis of scRNAseq datasets by biologists with little informatics experience is limited. Here we describe an informatics tool (PyMINEr) that fully automates cell type identification, cell type-specific pathway analyses, graph theory-based analysis of gene regulation, and detection of autocrine/paracrine signaling networks in silico. We applied PyMINEr to interrogate human pancreatic islet scRNAseq datasets and discovered several features of co-expression graphs including: concordance of scRNAseq-graph structure with both protein-protein interactions and 3D-genomic architecture; association of high connectivity and low expression genes with cell type-enrichment; and potential for graph-structure to clarify potential etiologies of enigmatic disease-associated variants. We further created a consensus co-expression network and autocrine/paracrine signaling networks within and across islet cell types from 7-datasets. PyMINEr correctly identified changes in BMP/WNT signaling associated with cystic fibrosis pancreatic acinar-cell loss. This proof-of-principle study demonstrates that the PyMINEr framework will be a valuable resource for scRNAseq analyses. Overall design: Human islets were obtained from the integrated islet distribution program (IIDP), cultured overnight, then prepared for scRNAseq via the Fluidigm C1 platform. RNAseq was perfromed on Illumina HiSeq 2500.
PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq.
Sex, Age, Specimen part, Race, Subject
View SamplesPHD4 regulates the expression of Hypxia-inducible Factor 2 (HIF-2) alpha in LM8 osteosarcoma cells. PHD4 overexpression inhibits the growth of experimental tumor in syngenic mice but stimulates angiogenesis via Transforming Growth-Factor (TGF)-alpha.
PHD4 stimulates tumor angiogenesis in osteosarcoma cells via TGF-α.
Cell line, Treatment
View SamplesWe evaluated longitudinal changes in viral replication and emergence of viral variants in the context of T cell homeostasis and gene expression in GALT of three HIV-positive patients who initiated HAART during primary HIV infection but opted to interrupt therapy thereafter. Longitudinal viral sequence analysis revealed that a stable proviral reservoir was established in GALT during primary HIV infection that persisted through early HAART and post-therapy interruption. Proviral variants in GALT and peripheral blood mononuclear cells (PBMCs) displayed low levels of genomic diversity at all times. A rapid increase in viral loads with a modest decline of CD4 T cells in peripheral blood was observed, while gut mucosal CD4 T cell loss was severe following HAART interruption. This was accompanied by increased mucosal gene expression regulating interferon (IFN)-mediated antiviral responses and immune activation, a profile similar to those found in HAART-naive HIV-infected patients.
The gut mucosal viral reservoir in HIV-infected patients is not the major source of rebound plasma viremia following interruption of highly active antiretroviral therapy.
Specimen part, Disease, Disease stage
View SamplesForeign body reaction (FBR), initiated by adherence of macrophages to biomaterials, is associated with several complications.
Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts.
Specimen part
View SamplesTGZ is an agonist of the nuclear receptor PPARgamma. This synthetic compound displays anticancer effects on breast cancer cells but some of them are PPARgamma independent. Delta-2-TGZ (delta-2-troglotazone) is a PPARgamma inactive TGZ derivative possessing a double bond adjoining the thiazolidinedione ring. This compound still displays anticancer efefcts. It is an interesting tool to study the PPARgamma-independent mechanisms.
Pro-apoptotic effect of Δ2-TGZ in "claudin-1-low" triple-negative breast cancer cells: involvement of claudin-1.
Cell line
View SamplesHypoxia protects cancer cells from chemotherapeutic drug-induced cell death.
TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells.
Cell line
View SamplesThe aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing -cell gene expression, the beta-Cell Gene Atlas (BCGA).
Detailed transcriptome atlas of the pancreatic beta cell.
No sample metadata fields
View SamplesBasic helix-loop-helix (bHLH) proneural transcription factors (TFs) Ascl1 and Neurog2 are integral to the development of the nervous system. Here, we investigated the molecular mechanisms by which Ascl1 and Neurog2 control the acquisition of generic neuronal fate and impose neuronal subtype identity. Using direct neuronal programming of embryonic stem cells, we found that Ascl1 and Neurog2 regulate distinct targets by binding to largely different sets of sites. Their divergent binding pattern is not determined by the previous chromatin state but distinguished by specific E-box enrichments which reflect the DNA sequence preference of the bHLH domain. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity landscapes that shape the binding and activity of downstream TFs during neuronal specification. Our findings suggest that proneural factors contribute to neuronal diversity by differentially altering the chromatin landscapes that shape the binding of neuronally expressed TFs. Overall design: Single-cell RNA-seq was used to characterize gene expression in mixed populations of mES cells containing induced expression of either Ascl1 or Neurog2.
Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes.
Specimen part, Treatment, Subject
View SamplesRNA sequencing of ILC2s sorted from ß2 adrenergic receptor agonist-treated and non-treated mice Overall design: RNAs of ILC2s sorted as KLRG1+CD127+CD90+Lin-CD45+ from ß2 adrenergic receptor agonist-treated and non-treated mice mLNs 4 days post N. brasiliensis infection were analyzed
β<sub>2</sub>-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.
Specimen part, Cell line, Treatment, Subject
View Samples