Identification of downstream genes of onecut transcriptions factors in the developing retina
Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development.
No sample metadata fields
View SamplesInvasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy towards this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of haematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time RT-PCR assay and we also found a down-regulation of S100B in A.fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.
Genome-Wide Expression Profiling Reveals S100B as Biomarker for Invasive Aspergillosis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View Samples3T3-L1 fibroblasts are a commonly used in vitro model for adipogenesis. When induced with hormones, they differentiate into mature fat cells. Here, microarrays were used to study 3T3-L1 adipose differentiation through time.
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View SamplesGene expression was studied from different mouse tissues
Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development.
Specimen part
View SamplesIn immune responses, activated T cells migrate to B cell follicles and develop to T follicular helper (Tfh) cells, a new subset of CD4+ T cells specialized in providing help to B lymphocytes in the induction of germinal centers 1-3. Although Bcl6 has been shown to be essential in Tfh cell function, it may not regulate the initial migration of T cells 4 or the induction of Tfh program as exampled by CXCR5 upregulation 5. Here, we show that the Achaete-Scute homologue 2 (Ascl2) gene that encodes a basic helix-loop-helix (bHLH) transcription factor 6, is selectively upregulated in its expression in Tfh cells. Ectopic expression of Ascl2 uniquely upregulates CXCR5 but not Bcl6 and downregulates CCR7 expression in T cells in vitro and accelerates T cell migration to the follicles and Tfh cell development in vivo. Combined transcriptome profiling and genome-wide occupancy analysis indicate that Ascl2 directly regulates Tfh-related genes while inhibits expression of Th1 and Th17 genes. Acute deletion of Ascl2 as well as blockade of its function with the Id3 protein in peripheral CD4+ T cells results in a failure in Tfh cell development and the germinal center response. Conversely, mutation of Id3, known to cause antibody-mediated autoimmunity, greatly enhances Tfh cell generation. Thus, Ascl2 critically and directly initiates Tfh cell development.
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development.
Specimen part
View SamplesGenotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST Gene Chips. In this dataset we include expression data obtained from 8 normal adrenal medulla and 45 PHEOs/PGLs patient samples.
Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas.
Sex, Specimen part
View SamplesBackground: Colorectal cancers are believed to arise predominantly from adenomas. Although these precancerous lesions have been subjected to extensive clinical, pathological, and molecular analyses, little is currently known about the global gene expression changes accompanying their formation. Results: To characterize the molecular processes underlying the transformation of normal colonic epithelium, we compared the transcriptomes of 32 prospectively collected adenomas with those of normal mucosa from the same individuals. Important differences emerged not only between the expression profiles of normal and adenomatous tissues, but also between those of small and large adenomas. A key feature of the transformation process was the remodeling of the Wnt pathway reflected in patent over- and underexpression of 78 known components of this signaling cascade. Conclusions: Our transcriptomic profiles of normal colonic mucosa and colorectal adenomas shed new light on the early stages of colorectal tumorigenesis.
Transcriptome profile of human colorectal adenomas.
Specimen part, Subject
View SamplesAims: We investigate sex differences and the role of oestrogen receptor beta (ERbeta) in a mouse model of pressure overload-induced myocardial hypertrophy. Methods and results: We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta-/-) C57Bl6 mice. All mice were characterised by echocardiography and haemodynamic measurements and were sacrificed nine weeks after surgery. Left ventricular (LV) samples were analysed by microarray profiling, real-time RT-PCR and histology. After nine weeks, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. These sex differences were abolished in ERbeta-/- mice. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that male WT hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than female hearts. ERbeta-/- mice exhibited a different transcriptome. Induction of pro-apoptotic genes after TAC occurred in ERbeta-/- mice of both sexes with a stronger expression in ERbeta-/- males. Histological analysis revealed, that cardiac fibrosis was more pronounced in male WT TAC than in female mice. This was abolished in ERbeta-/- mice. Apoptosis was significantly induced in both sexes of ERbeta-/- TAC mice, but it was most prominent in males. Conclusion: Female sex offers protection against ventricular chamber dilation in the TAC model. Both the female sex and ERbeta attenuate the development of fibrosis and apoptosis; thus slowing the progression to heart failure.
Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.
Sex, Age, Specimen part
View Samples