Analysis of cerebella from Capicua (Cic) mutant mice and wild-type controls at 28 days of age (P28). Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by expansion of a translated CAG repeat in Ataxin-1 (ATXN1). The transcriptional repressor Cic binds directly to Atxn1 and plays a key role in SCA1 pathogenesis. Two isoforms of Cic, long (Cic-L) and short (Cic-S), are transcribed from alternative promoters. Using embryonic stem cells in which the Cic locus was targeted by an insertion of a genetrap cassette between exon 1 of the Cic-L isoform and exon 1 of the Cic-S isoform, we generated mice that carried this allele and backcrossed these onto a Swiss Webster (CD-1) strain for >6 generations. The resulting Cic-L-/- mice completely lack the Cic-L isoform with ~10% of Cic-S remaining. These data were used to compare with previous microarray data to determine the Cic-depedent pathogenic mechanisms in SCA1.
Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua.
No sample metadata fields
View SamplesGermline stem cell self-renewal and differentiation are required for sustained production of gamates. GSC differentiation in drosophila requires expression of setdb1 by the somatic niche, however its function is not known.
Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila.
Specimen part
View SamplesPrevious studies have reported that human pluripotent stem cells (hPSCs) generate dorsal forebrain, cortical-like neurons under default differentiation in the absence of patterning morphogens. Novel bioinformatic analyses of whole transcriptome data allow us to examine these cells' regional specification more comprehensively. Furthermore, these tools allow us to ask how well hPSNs mimic their endogenous counterparts during various stages of in vivo human brain development.
Default Patterning Produces Pan-cortical Glutamatergic and CGE/LGE-like GABAergic Neurons from Human Pluripotent Stem Cells.
Sex, Specimen part, Time
View SamplesReverse genetics has been widely used to investigate function of viral genes. In the present study we investigated the gene expression profile of a primary ovine cell (OFTu) in response to infection with the wild type (OV-IA82) and deletion mutant virus (OV-IA82024) aiming to determine possible functions for ORFV024 during ORFV infection.
A novel inhibitor of the NF-{kappa}B signaling pathway encoded by the parapoxvirus orf virus.
Specimen part
View SamplesWe present ScarTrace, a single-cell sequencing strategy that allows us to simultaneously quantify information on clonal history and cell type for thousands of single cells obtained from different organs from adult zebrafish. Using this approach we show that all blood cells types in the kidney marrow arise from a small set of multipotent embryonic. In contrast, we find that cells in the eyes, brain, and caudal tail fin arise from many embryonic progenitors, which are more restricted and produce specific cell types in the adult tissue. Next we use ScarTrace to explore when embryonic cells commit to forming either left or right organs using the eyes and brain as a model system. Lastly we monitor regeneration of the caudal tail fin and identify a subpopulation of resident macrophages that have a clonal origin that is distinct from other blood cell types. Overall design: Single cell sequencing data from cells isolated from zebrafish organs (whole kidney marrow, forebrain, hindbrain, left eye, right eye, left midbrain, right midbrain, and regenerated fin). For each cell, we provide libraries with transcritpome and with clonal information, respectively.
Whole-organism clone tracing using single-cell sequencing.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.
Age, Specimen part
View SamplesAnalysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchestrated the immune reponse triggered in presence of embryo
Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.
Age, Specimen part
View SamplesAnalysis of B16 tumor microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchastrated the immune reponse triggered in presence of tumors
Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.
Age, Specimen part
View SamplesAnalysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study was that Tregs orchestrated the immune reponse triggered in presence of embryo.
Regulatory T Cells Orchestrate Similar Immune Evasion of Fetuses and Tumors in Mice.
Age, Specimen part
View SamplesWe report the total RNA-seq results after CDK9, CDK12 and CDK13 depletion in human HCT116 cells for three days. RNA-seq was performed in cells using two non-targeting replicates and two different shRNAs for each CDK knockdown. For each CDK knockdown, most of the differentially expressed genes were down-regulated with a very small subset of genes upregulated. Different CDK proteins control distinct subsets of genes in vivo, with CDK12 and CDK13 sharing more overlap in function compared to CDK9. Besides, CDK12 and CDK13 loss preferentially affects DNA damage response and snRNA gene expression, respectively. Overall design: Examine the changes of mRNA expression levels after CDK9, CDK12 and CDK13 depletion.
Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing.
No sample metadata fields
View Samples