In human cells, Staufen1 is double-stranded RNA-binding protein involved in several cellular functions including mRNA localization, translation and decay. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen1. The mRNA content of Staufen1 mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with a Stau1-HA expressor. Our results indicate that 7% of the cellular RNAs expressed in HEK293T cells are found in Stau1-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.
A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.
No sample metadata fields
View SamplesIn human cells, Staufen2 is a double-stranded RNA-binding protein involved in several cellular functions. Although 51% identical to Staufen1, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen2 isoforms. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen2-containing complexes following transfection of HEK293T cells with Stau2-HA (59kDa) or Stau2-HA (62kDa) expressors. Our results indicate that 11% of the cellular RNAs expressed in HEK293T cells are found in Stau2-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.
A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.
No sample metadata fields
View SamplesBorrelia burgdorferi, the agent of Lyme disease, promotes pro-inflammatory changes in endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, seven of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed endothelium exposed to B. burgdorferi and IFN-gamma, as compared to unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelium exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.
IFN-gamma alters the response of Borrelia burgdorferi-activated endothelium to favor chronic inflammation.
No sample metadata fields
View SamplesIt is currently unknown how extensively the double-stranded RNA binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3 untranslated region (3UTR) of ARF1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3UTR by Stau1. Here, we use microarray analyses to examine changes in the abundance of cellular mRNAs that occur when Stau1 is depleted. Results indicate that 1.1% and 1.0% of the 11,569 HeLa-cell transcripts that were analyzed are, respectively, upregulated and downregulated at least two-fold in three independently performed experiments. Additionally, we localize the Stau1 binding site to the 3UTR of four mRNAs that we define as natural SMD targets. Together, these and substantiating results suggest that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.
Staufen1 regulates diverse classes of mammalian transcripts.
No sample metadata fields
View SamplesThe glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear.
Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.
Specimen part
View SamplesTo identify molecules to serve as diagnostic markers for high-grade prostate cancer (PC) and targets for novel therapeutic drugs, we investigated the gene expression profiles of high-grade PCs using a cDNA microarray combined with laser microbeam microdissection.
The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer.
Specimen part
View SamplesWe identified fibro-inflammatory and keratin gene expression signatures in systemic sclerosis skin.
Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis.
Age, Specimen part, Race, Subject, Time
View SamplesWe identified eighty two skin transcripts significantly correlated with the severity of interstitial lung disease (ILD) in systemic sclerosis.
Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis.
Age, Specimen part, Race, Subject
View SamplesDespite advance in interferon-based treatment for chronic hepatitis C, difficult-to-treat patients remain in existence yet. To identify key genes involved in difficult-to-treat characteristics, gene expression patterns of miRNA and RNA were analyzed by profiling pretreatment liver tissues from five sustained virological responders (SVR), three relapsers (R) and four non-responders (NR). Expression levels of miRNA and mRNA were compared between SVR/R and NR groups by using microarray, respectively. Quantitative real-time reverse-transcriptase polymerase chain reaction and statistical analyses validated genes with significantly differential expression levels in 50 liver tissues: proliferation-, inflammation- and anti-apoptosis-related mRNA expression levels increased significantly in NR, compared to SVR/R. Of miRNA with significantly differential expression levels on microarray, several miRNA were correlated inversely with those significant mRNA. In vitro studies by using miRNA inhibitors and mimics verified the inverse correlation between the miRNA and mRNA. These findings enhance our understanding of the difficult-to-treat molecular mechanism and identification of target molecules for novel treatments.
Involvement of MAP3K8 and miR-17-5p in poor virologic response to interferon-based combination therapy for chronic hepatitis C.
Sex, Specimen part
View SamplesMethylation of histone H3 lysine 4 (H3K4me) at actively expressed, cell type-specific genes is established during development by the Trithorax group of epigenetic regulators. In mammals, the Trithorax family includes KMT2A-D (MLL1-4), a family of SET domain proteins that function in large complexes to impart mono-, di-, and trimethylation at H3K4. Individual KMT2s and their co-factors are essential for embryonic development and the establishment of correct gene expression patterns, presumably by demarcating the active and accessible regions of the genome in a cell specific and heritable manner. Despite the importance of H3K4me marks in development, little is known about the importance of histone methylation in maintaining gene expression patterns in fully differentiated and non-dividing cell types. In this report, we utilized an inducible cardiac-specific Cre driver to delete the PTIP protein, a key component of a H3K4me complex, and ask whether this activity is still required to maintain the phenotype of terminally differentiated cardiomyocytes. Our results demonstrate that reducing the H3K4me3 marks is sufficient to alter gene expression patterns and significantly augment systolic heart function. These results clearly show that maintenance of H3K4me3 marks is necessary for the stability of the transcriptional program in differentiated cells. The array we performed allowed us to identify genes that are regulated by PTIP and histone methylation.
Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes.
Sex, Specimen part
View Samples