Prostate cancer C4-2B cells were cultured in enzalutamide in a dose-escalation manner. After sixty passages cells were resistant to enzalutamide, with a specific sets of genes been deregulated.
Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer.
Specimen part, Cell line
View SamplesThe aim of the study was to identify candidate genes responsible for drought tolerance trait between a pair of wheat varieties ( WL711 and C306) and correspondng progeny bulks (10 drought susceptible RILs and 10 drought tolerant RILs) by combining QTLs analysis with expression analysis. Microarray analysis of RNA extracted from the flag leaves showed large number of differentially expressed genes. The number of differentially expressed genes was reduced to 37 on the basis of their occurance in a major QTL region (responcible for drought tolerance) detected in RIL population derived from WL711 and C306.
Genomic associations for drought tolerance on the short arm of wheat chromosome 4B.
Specimen part
View SamplesLangerhans-cell histiocytosis (LCH) is characterized by heterogeneous lesions containing CD207+ Langerhans cells (LCs) and lymphocytes. In this study, we isolated CD207+ cells and CD3+ T cells from LCH lesions to determine cell-specific gene expression. Compared to control epidermal CD207+ cells, the LCH CD207+ cells yielded 2113 differentially-expressed genes (FDR<0.01). Surprisingly, expression of many genes previously associated with LCH, including cell-cycle regulators, pro-inflammatory cytokines and chemokines were not significantly different from control LCs in our study. However, several novel genes whose products activate and recruit T cells to sites of inflammation, including SPP1 (osteopontin), were highly over-expressed in LCH CD207+ cells. Furthermore, several genes associated with immature myeloid dendritic cells were over-expressed in LCH CD207+ cells. Compared to the peripheral CD3+ cells from LCH patients, the LCH lesion CD3+ cells yielded only 162 differentially-regulated genes (FDR<0.01), and the expression profile of the LCH lesion CD3+ cells was consistent with an activated regulatory T cell phenotype with increased expression of FOXP3, CTLA4 as well as SPP1. Based on these results, we propose a new model of LCH pathogenesis in which lesions do not arise from epidermal Langerhans cells, but from accumulation of bone-marrow derived immature myeloid dendritic cells that recruit activated lymphocytes.
Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells.
Specimen part
View SamplesThe aim of this study was to identify candidate genes responsible for grain number per panicle between a pair of rice varieties (Pusa 1266 and Pusa Basmati 1) by combining QTL analysis with expression analysis. Microarray analysis of RNA extracted from the panicle primordia showed 2741 differentially expressed genes. The differentially expressed genes were shortened to 18 on the basis of their occurance in the QTL region (responsible for grain number regulation) detected in RIL population derived from Pusa 1266 and Pusa Basmati 1.
Identification of candidate genes for grain number in rice (Oryza sativa L.).
No sample metadata fields
View SamplesThe aim of this study was to minimize the number of candidate genes responsible for salt tolerance between a pair of rice varieties (CSR27 and MI48) with contrasting level of salt tolerance by bulked segregant analysis of their recombinant inbred lines. Microarray analysis of RNA extracted from the tolerant and susceptible parents without and with stress showed 798 and 2407 differentially expressed genes, respectively. The number of differentially expressed genes was drastically reduced to 70 and 30, by pooling the RNAs from ten extreme tolerant and ten extreme susceptible RILs due to normalization of irrelevant differentially expressed genes between the parents.
Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).
No sample metadata fields
View SamplesCancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared to single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared to single agents. Mice, bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared to single agents. A set of 37 genes cooperatively affected (34 down-regulated; 3 up-regulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes down-regulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared to normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivo.
Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesTranscriptome analysis was performed from human U87 glioblastoma cell clones: U87 IRE1.NCK DN (U87dn, IRE1 dominant negative) and U87 control (U87ctrl, empty plasmid). Cells were grown in DMEM supplemented with 10% FBS and glutamine for 16 hours in culture prior mRNA isolation and analyses
Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma.
Cell line
View Samples