A major limitation in the cancer treatment is the ability of cancer cells to become resistant to chemotherapeutic drugs, by multidrug establishment. Here, we evaluate the possibility to utilize MC70, either as ABC transporters inhibitor or as anticancer agent, in monotherapy or in combination with doxorubicin for cancer treatment. The study was carried out in MCF7/ADR and Caco-2, breast and colon cancer cells, respectively. Cell growth and apoptosis were measured by MTT assay and DNA laddering Elisa kit, respectively. Cell cycle perturbation and cellular targets modulation were analyzed by flowcytometry and western blotting, respectively. MC70 was analyzed for its interaction with ABC transporters, MDR-1, BCRP and MRP-1, and for its anticancer activity. In MCF7/ADR, MC70 slight inhibited cell proliferation and strongly enhanced doxorubicin effectiveness; conversely in Caco-2, it inhibited cell growth without affecting doxorubicin efficacy. In addition, it induced apoptosis, canceled in favor of necrosis when it was given in combination with high doses of the anthracycline. Moreover, MC70 inhibited cell migration probably through its residual activity as sigma-1 ligand. Among the hypothesized molecular and cellular mechanisms responsible for all these effects, modulations of cell cycle, of pAkt and of the three MAPKs phosphorylation were evidenced while activity at transcription level was excluded. MC70 can be considered as a potential new anticancer agent with the capability to enhance doxorubicin effectiveness and an interesting role in the treatment of chemotherapy resistant tumors.
MC70 potentiates doxorubicin efficacy in colon and breast cancer in vitro treatment.
Cell line, Treatment
View SamplesUnderstanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES) cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cell (PGCs) and identified genes up-regulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved over-represented motifs in genes up-regulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and Embryonic Germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species.
Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells.
Age, Specimen part, Time
View SamplesTo identify altered pathways in SCA28 LCLs, we performed a whole genome expression profiling, based on Affymetrix Human Genome U133A 2.0 Chip Array, on LCLs from four unrelated patients, each carrying a different AFG3L2 mutation.
Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways.
Sex, Specimen part
View SamplesHT induces an OXPHOS metabolic editing of ER+ breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy
Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.
Specimen part
View SamplesRNA sequencing of HeLa cells treated with siRNA against the RNA exosome components hRRP40, hRRP6, hDIS3, and hRRP6/hDIS3 or the splicing inhibitors Isoginkgetin and spliceostatin A, respectively. Overall design: Stranded, ribo-depleted RNA seq profiles of HeLa cells treated with exosome targeting siRNAs or splicing inhibitors using Illumina HiSeq. All experiments were carried out in triplicate starting with independent cell cultures
Human Telomerase RNA Processing and Quality Control.
No sample metadata fields
View SamplesThe Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.
Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.
Sex, Specimen part
View SamplesColorectal cancer (CRC) remains the leading cause of cancer-related death in the world. Aspirin (ASA) and curcumin (CUR) are widely investigated chemopreventive candidates for CRC. However, the precise mechanisms of their action and their combinatorial effects have not been evaluated. The purpose of the present study was to determine the effect of ASA, CUR, and their combination in azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-accelerated colorectal cancer (CAC). We also aimed to characterize the differential gene expression profiles in AOM/DSS-induced tumors as well as in tumors modulated by ASA and CUR using RNA-seq. Diets supplemented with 0.02% ASA, 2% CUR or 0.01% ASA + 1% CUR were given to mice from 1 week prior to the AOM injection until the experiment was terminated 22 weeks after AOM initiation. Our results showed that CUR had a superior inhibitory effect in colon tumorigenesis compared to that of ASA. The combination of ASA and CUR at a lower dose exhibited similar efficacy to that of a higher dose of CUR at 2%. RNA isolated from colonic tissue from the control group and from tumor samples from the experimental groups was subjected to RNA-seq. Transcriptomic analysis suggested that the low-dose combination of ASA and CUR modulated larger gene sets than the single treatment. These differentially expressed genes were situated in several canonical pathways important in the inflammatory network and liver metastasis in CAC. We identified a small subset of genes as potential molecular targets involved in the preventive action of the combination of ASA and CUR. Taken together, the current results provide the first evidence in support of the chemopreventive effect of a low-dose combination of ASA and CUR in CAC. Moreover, the transcriptional profile obtained in our study may provide a framework for identifying the mechanisms underlying the carcinogenesis process from normal colonic tissue to tumor development as well as the cancer inhibitory effects and potential molecular targets of ASA and CUR. Overall design: 10 RNA samples (5 experimental groups with duplicates) were sequenced using Illumina NextSeq 500 instrument.
Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq.
Specimen part, Treatment, Subject
View SamplesNeuropathic pain is a complex chronic condition, characterized by a wide range of sensory, cognitive, and affective symptoms. Indeed, a large percentage of neuropathic pain patients are also afflicted with depression and anxiety disorders -- a pattern that is reliably replicated in animal models. Mounting evidence from clinical and preclinical studies indicates that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major determinant for depression. However, whether chronic pain and chronic stress affect similar mechanisms, and whether chronic pain can affect gene expression patterns known to be involved in depression, remains poorly understood. We employed the spared nerve injury model (SNI) of neuropathic pain in adult C57BL\6 mice and performed next-generation RNA-sequencing in order to monitor changes in gene expression in three brain regions known to be implicated in the pathophysiology of depression and in the modulation of pain: the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal grey (PAG). We observed mostly unique transcriptome profiles across the three brain regions but found common intracellular signal transduction pathways and biological functions were affected. A large amount of genes showing SNI-induced altered expression have been implicated in depression, anxiety, or chronic pain. In addition, we identified genes that are similarly regulated in a murine model of depression: chronic unpredictable stress. Our study provides the first unbiased characterization of neuropathic pain-induced long-term gene expression changes in three distinct brain regions, and presents evidence that neuropathic pain affects the expression of several genes that are also regulated by chronic stress. Overall design: RNA-seq samples were generated from 3 brain regions (nucleus accumbens, medial prefrontal cortex, and periaqueductal grey) of adult male mice, 2.5 months after sham or spared nerve injury to the sciatic nerve.
Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression.
Sex, Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene Array Analyzer: alternative usage of gene arrays to study alternative splicing events.
Age, Specimen part
View SamplesThe latest version of microarrays released by Affymetrix, the GeneChip Gene 1.0 ST Arrays (gene arrays), are designed in a similar fashion as exon arrays, which enables to identify differentially expressed exons, rather than only the expression level of whole transcripts. Here, we propose an extension, Gene Array Analyzer (GAA), to our previously published Exon Array Analyzer (EAA). GAA enables to analyse gene arrays on exon level and therefore supports to identify alternative splicing with gene arrays. To show the applicability of GAA, we used gene arrays to profile alternative splice events during the development of the heart. Further re-analysis of published gene arrays could show, that some of these splice events reoccur under pathological conditions. The web interface of GAA is user friendly, functional without set up and freely available at http://GAA.mpi-bn.mpg.de.
Gene Array Analyzer: alternative usage of gene arrays to study alternative splicing events.
Age, Specimen part
View Samples