Objectives and goals: The causes and molecular pathology of ovarian cancer are essentially unknown. However, it is generally understood that serous ovarian borderline tumors (SBOT) and well differentiated (WD) serous ovarian carcinomas (SC) have a similar tumorigenetic pathway, distinct from moderately (MD) and poorly differentiated (PD) SC. The aim of this study was to identify mRNAs differentially expressed between MD/PD SC, SBOT and superficial scrapings from normal ovaries (SNO),and to correlate these mRNAs with clinical parameters.
ZNF385B and VEGFA are strongly differentially expressed in serous ovarian carcinomas and correlate with survival.
Specimen part
View SamplesWe analyzed mRNAs in transiliacal bone biopsies from 7 patients with primary hyperparathyroidism using Affymetrix HG-U133A Gene Chips Similar analyses of the global transcriptional activity were repeated in a second bone biopsy from the same patient taken one year after surgery and reversal of disease parameters.
Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism.
Sex, Age, Specimen part, Disease, Subject
View SamplesHuman bone marrow is a complex, diversified and well-organized hematopoietic network changing composition with age. The purpose of this study was to analyze variations in relative precursor B cell abundance in bone marrow with age by means of global gene expression profiling. RNA was isolated from composite bone marrow from 25 healthy children, adolescents and adults age 2 months to 28 years. As reference transcript for precursor B cells we used recombination activating gene RAG1 exploring the data for other transcripts showing the same profile as RAG1 with age. We identified 54 genes with correlated expression profiles to RAG1 (r 0.9, p = 0), characterized by high expression at 3 - 20 months followed by a fast decline to lower signal levels maintained until early adulthood. Immunophenotyping from a similar healthy age-matched cohort (n = 37) showed a comparable decrease of precursor B cells. Of the 54 genes 15 were characteristically B cell associated representing cell surface molecules (CD19, CD72, CD79A, CD79B, CD180, IGL@, IGLL1, VPREB1, VPREB3), a signal transduction molecule (BLNK) and transcription factors (DNTT, EBF1, PAX5, POU2AF1, RAG2). Of the remaining transcripts some may represent novel B cell transcripts or genes involved in control of B cells.
Striking decrease in the total precursor B-cell compartment during early childhood as evidenced by flow cytometry and gene expression changes.
No sample metadata fields
View SamplesAntisense long non-coding (aslnc)RNAs represent a substantial part of eukaryotic transcriptomes that are, in yeast, controlled by the Xrn1 exonuclease. Nonsense-Mediated Decay (NMD) destabilizes the Xrn1-sensitive aslncRNAs (XUT), but what determines their sensitivity remains unclear. We report that 3’ single-stranded (3’-ss) extension mediates XUTs degradation by NMD, assisted by the Mtr4 and Dbp2 helicases. Single-gene investigation, genome-wide RNA analyses and double-stranded (ds)RNA mapping revealed that 3''-ss extensions discriminate the NMD-targeted XUTs from stable lncRNAs. Ribosome profiling showed that XUT are translated locking them for NMD activity. Interestingly, mutants of the Mtr4 and Dbp2 helicases accumulated XUTs, suggesting that dsRNA unwinding is a critical step for degradation. Indeed, expression of anti-complementary transcripts protects cryptic intergenic lncRNAs from NMD. Our results indicate that aslncRNAs form dsRNA that are only translated and targeted to NMD if dissociated by Mtr4 and Dbp2. We propose that NMD buffers genome expression by discarding pervasive regulatory transcripts. Overall design: Strand-specific transcriptome analysis of biological replicates (1) of WT and xrn1-delta cells of the S288C, W303 and SK1 (n & 2n) genetic background of S. cerevisiae; (2) of WT, dcp2-7 and upf1-delta cells; (3) of WT, xrn1-delta and dcp2-7 cells upon treatment of total RNA with Terminator 5''-Phosphate-Dependent Exonuclease. This record also contains CAGE-Seq analysis in wild-type and decapping-deficient cells of the budding yeast S. cerevisiae.
Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure.
Subject
View SamplesGene expression studies comparing IFNg+ Tregs versus IFNg- Tregs from human peripheral blood
AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.
Specimen part
View SamplesNeural stem cells were sorted according to their activated or quiescent state by flow cytometry using a set of 3 markers (LeX, CD24 and EGFR)
Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment.
Sex, Specimen part
View SamplesIn the current study, we used exon arrays and clinical samples from a previous trial (SAKK 19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response (EGFR, KRAS, VEGFA).
EGFR exon-level biomarkers of the response to bevacizumab/erlotinib in non-small cell lung cancer.
Sex, Specimen part, Disease, Disease stage, Treatment
View SamplesHuman Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.
Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.
Specimen part
View SamplesPitx1, critical regulator of a limited hindlimb-specific gene network, targets the limb development program common to both fore- and hindlimbs in order to implement hindlimb-specific limb morphology. Overall design: The gene regulatory networks governing forelimb vs. hindlimb development in mouse were investigated using expressing profiling of morphologically stage-matched e10.5 forelimbs and e11.0 hindlimbs, ChIPseq of chromatin marks, and ChIPseq of limb-specific transcription factors Pitx1 and Tbx5. The makeup of the Pitx1-directed components of the hindlimb gene network were investigated using expression profiling of Pitx1 null hindlimbs at two stages (e11.0 and e11.5).
Regulatory integration of Hox factor activity with T-box factors in limb development.
Specimen part, Cell line, Subject
View SamplesHuman Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.
Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.
Specimen part
View Samples