Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. Peripheral blood mononuclear cells (PBMC) obtained either during the pollen season or out of season, from allergic individuals and non-allergic controls were stimulated either with TG extract or a pool of previously identified immunodominant antigenic regions. PBMC from in season allergic subjects exhibit higher IL-5 and IL-10 responses compared to out of season donors. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN? compared to allergic individuals. Strikingly, non-atopic donors exhibited an opposing pattern with decreased immune reactivity in-season. The broad downregulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure but rather react with an active modulation of the responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with allergen exposure and inhibition of responses in non-allergic donors. Magnitude and functionality of T-helper cell responses differ substantially for in season versus out of season in allergic and non-allergic subjects. The results indicate specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programs associated with health and allergic disease. Overall design: 11 allergen-specific T cell RNA samples were analyzed: 5 isolated from PBMC of allergic individuals and 6 from non-allergic individuals (considered as the control group).
Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.
No sample metadata fields
View SamplesMYC-amplified medulloblastomas are highly lethal tumors. BET bromodomain inhibition was recently described to downregulate MYC-associated transcriptional activity in various cancer subtypes. To investigate whether JQ1, a BET bromodomain inhibitor is downregulation MYC and MYC-associated transcriptional activity, we performed global gene expression profiling of five medulloblastomas MYC-amplified patient-derived cell lines treated by JQ1 and the inactive form of JQ1.
BET bromodomain inhibition of MYC-amplified medulloblastoma.
Specimen part, Cell line, Treatment
View SamplesNitric oxide being a versatile molecule inside biological systems, from being both a cell signaling molecule to a potent stress agent, has significant effect in the transcriptional response in fission yeast.
Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.
No sample metadata fields
View SamplesSound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.
Plant acoustics: in the search of a sound mechanism for sound signaling in plants.
Age, Specimen part
View Samplesidentification of differentially expressed genes in gas6 homozygous mutant hindbrain when compared to wildtype hindbrain in zebrafish Overall design: Total RNA was extracted from dissected hindbrain of gas6 homzygous mutants and wildtype embryos at 48hpf using the RNeasy Mini Kit (Qiagen). Three libraries from wildtype embryos and three libraries from gas6 mutants were then generated from 3mg RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina). All libraries were analyzed for quality on a bioanalyzer prior to sequencing (Agilent 2100 BioAnalyzer).
Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.
Specimen part, Subject
View SamplesThe Human T-cell Leukemia Virus (HTLV)-type-I non-structural protein p30 plays an important role in virus transmission and gene regulation. p30 has been documented to inhibit the export of certain viral mRNA transcripts from the nucleus to the cytoplasm. This nuclear retainment of RNA molecules essentially results in gene silencing, where protein products are not produced.
Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30.
Specimen part
View SamplesDiscriminating pathogenic bacteria from energy-harvesting commensals is key to host immunity. Using mutants defective in the enzymes of O-linked N-acetylglucosamine (O-GlcNAc) cycling, we examined the role of this nutrient-sensing pathway in the Caenorhabidits elegans innate immune response. Using whole genome transcriptional profiling, O-GlcNAc cycling mutants exhibited deregulation of unique stress- and immune-responsive genes as well as genes shared with the p38 MAPK/PMK-1 pathway. Moreover, genetic analysis showed that deletion of O-GlcNAc transferase (ogt-1) yielded animals hypersensitive to the human pathogen S. aureus but not to P. aeruginosa. Genetic interaction studies further revealed that nutrient-responsive OGT-1 acts through the conserved -catenin (BAR-1) pathway and in concert with p38 MAPK/PMK-1 to modulate the immune response to S. aureus. The participation of the nutrient sensor O-GlcNAc transferase in an immunity module conserved from C. elegans to humans reveals an unexplored nexus between nutrient availability and a pathogen-specific immune response.
Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity.
Treatment
View SamplesEscherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.
Transcriptional effects of CRP* expression in Escherichia coli.
No sample metadata fields
View SamplesSickle cell disease is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems
Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.
Specimen part, Treatment, Subject
View Samples