We performed morphogen-directed differentiation of human PSCs into HE followed by combinatorial screening of 26 candidate HSC-specifying TFs for the potential to promote hematopoietic engraftment in irradiated immune deficient murine hosts. We recovered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, SPI1) that together were sufficient to convert HE into hematopoietic stem and progenitor cells (HSPCs) that engraft primary and secondary murine recipients Overall design: Examination of expression pattern in hematopoietic cells.
Haematopoietic stem and progenitor cells from human pluripotent stem cells.
Specimen part, Subject
View SamplesWe used microarrays to detail the global programme of gene expression underlying cardiac development by HDAC2 and identified distinct classes of up-regulated and down-regulated genes during this process.
Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity.
No sample metadata fields
View SamplesGlucocorticoids (GCs) are a central component in treating childhood acute lymphoblastic leukemia (chALL). They mainly act via regulating gene transcription. However, control of mRNA translation by GC has never been assessed systematically. In our research, T- and precursor B-ALL cells were cultured with and without GC for 6 hours and subjected to translational profiling, a technique combining sucrose gradient fractionation and microarray analysis of mRNA in different fractions. Analysis of GC regulation in different pools revealed no significant differences in regulation of mRNA translation by GC, suggesting no evidence for translational regulation by GC.
Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.
Cell line, Treatment
View SamplesThe modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver from Sprague Dawley rats dosed with myclobutanil (300 mg/kg/day) or triadimefon (175 mg/kg/day) for 6, 24 or 336 hours. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism and fatty acid metabolism were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
No sample metadata fields
View SamplesThe triazole antifungals myclobutanil (MYC), propiconazole (PPZ) and triadimefon (TDF) [Propiconazole CASNR 60207-90-1; Triadimefon CASNR 43121-43-3; Myclobutanil CASNR 88671-89-0] all disrupt steroid hormone homeostasis and cause varying degrees of hepatic toxicity. To identify biological pathways consistently activated across various study designs, gene expression profiling was conducted on livers from rats following acute, repeated dose, or prenatal to adult exposures. To explore conservation of responses across species, gene expression from these rat in vivo studies were also compared to in vitro data from rat and human primary hepatocytes exposed to MYC, PPZ, or TDF. Pathway and gene level analyses across time of exposure, dose, and species identified patterns of expression common to all three triazoles, which were also conserved between rodents and humans. Pathways affected included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Many of the differentially expressed genes are regulated by the nuclear receptors CAR, PPAR alpha and PXR, including ABC transporter genes (Abcb1 and MDR1), genes significant to xenobiotic, fatty acid, sterol and steroid metabolism (Cyp2b2 and CYP2B6; Cyp3a1 and CYP3A4; Cyp4a22 and CYP4A11) and xxx (Ugt1a1 and UGT1A1). Modulation of hepatic sterol and steroid metabolism is a plausible mechanism for triazole induced increases in serum testosterone. The gene expression changes caused by all three triazoles appear to focus on pathways regulating lipid and testosterone homeostasis, identifying potential common mechanisms of triazole hepatotoxicity that are conserved between rodents and humans.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
No sample metadata fields
View SamplesThe modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver and testis from Wistar Han IGS rats fed myclobutanil (M: 500, 2000 ppm), propiconazole (P: 500, 2500 ppm), or triadimefon (T: 500, 1800 ppm) from gestation day six to postnatal day 92. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Triadimefon induced a distinctive expression profile of genes involved in liver sterol biosynthesis. There were no common pathways modulated by all three triazoles in the testis. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pc, Ppap2b), and steroid metabolism (Srd5a1, Ugt1a1, Ugt2a1) were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism, sterol biosynthesis, and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.
Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals.
No sample metadata fields
View SamplesThe triazole antifungals myclobutanil (MYC), propiconazole (PPZ) and triadimefon (TDF) all disrupt steroid hormone homeostasis and cause varying degrees of hepatic toxicity. To identify biological pathways consistently activated across various study designs, gene expression profiling was conducted on livers from rats following acute, repeated dose, or prenatal to adult exposures. To explore conservation of responses across species, gene expression from these rat in vivo studies were also compared to in vitro data from rat and human primary hepatocytes exposed to MYC, PPZ, or TDF. Pathway and gene level analyses across time of exposure, dose, and species identified patterns of expression common to all three triazoles, which were also conserved between rodents and humans. Pathways affected included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Many of the differentially expressed genes are regulated by the nuclear receptors CAR, PPAR alpha and PXR, including ABC transporter genes (Abcb1 and MDR1), genes significant to xenobiotic, fatty acid, sterol and steroid metabolism (Cyp2b2 and CYP2B6; Cyp3a1 and CYP3A4; Cyp4a22 and CYP4A11) and xxx (Ugt1a1 and UGT1A1). Modulation of hepatic sterol and steroid metabolism is a plausible mechanism for triazole induced increases in serum testosterone. The gene expression changes caused by all three triazoles appear to focus on pathways regulating lipid and testosterone homeostasis, identifying potential common mechanisms of triazole hepatotoxicity that are conserved between rodents and humans.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
No sample metadata fields
View SamplesThe modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver and testis from Wistar Han IGS rats fed myclobutanil (M: 500, 2000 ppm), propiconazole (P: 500, 2500 ppm), or triadimefon (T: 500, 1800 ppm) from gestation day six to postnatal day 92. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Triadimefon induced a distinctive expression profile of genes involved in liver sterol biosynthesis. There were no common pathways modulated by all three triazoles in the testis. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pc, Ppap2b), and steroid metabolism (Srd5a1, Ugt1a1, Ugt2a1) were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism, sterol biosynthesis, and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.
Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals.
No sample metadata fields
View SamplesThe modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver from Sprague Dawley rats dosed with myclobutanil (300 mg/kg/day), propiconazole (300 mg/kg/day), or triadimefon (175 mg/kg/day) for 72 hours. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism and fatty acid metabolism were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
No sample metadata fields
View SamplesIn this study, we examine the consequences of the loss of two related factors, Onecut1 and Onecut2, during mouse retinal development.
Onecut1 and Onecut2 play critical roles in the development of the mouse retina.
Specimen part
View Samples