Cultured epidermal keratinocytes treated with OsM 1, 4, 24 & 48hrs, and Skinethic epidermal substitutes treated 1, 4, 24, 48h & 7days, each with untreated control
Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.
No sample metadata fields
View SamplesMLLT10, a 24 exons gene at 10p12, is known in leukemogenesis as partner of MLL or PICALM and recently NAP1L1. We identified HNRNPH1 and DDX3X, genes involved in RNA processing, as new MLLT10 partners in 2 cases of pediatric NOTCH1 positive T-ALL. HNRNPH1/5q35 encodes for a member of the ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) subfamily of RNA binding protein. DDX3X/Xp11.3, belongs to the big family of RNA helicases with a DEAD box domain.
New MLLT10 gene recombinations in pediatric T-acute lymphoblastic leukemia.
Disease
View SamplesWe have cloned and characterized a fusion gene NUP98/HHEX1 resulting from t(7;10) from a patient with acute myeloid leukemia (AML). As NUP98/HHEX acts as an aberrant transcriptional activator, putative targets were searched upon transient expression of the fusion in primary murine bone marrow cells.
Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia.
No sample metadata fields
View SamplesGEP class prediction in association with CI-FISH (42 candidate genes) and patient MRD stratification
Linking genomic lesions with minimal residual disease improves prognostic stratification in children with T-cell acute lymphoblastic leukaemia.
Specimen part, Disease, Disease stage
View SamplesSexual selection involves mate preference behavior and is a critical determinant for natural selection and evolutionary biology. Previously an environmental compound (fungicide vinclozolin) was found to promote epigenetic transgenerational inheritance of modified mate selection characteristics in all progeny for three generations after exposure of a gestating female. The current study investigated gene networks involved in various regions of the brain that correlated with the mate preference behavior altered in F3-Vinclozolin lineage animals. Statistically significant correlations of differentially expressed gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified critical gene networks involved in mate preference behavior and demonstrated the ability of environmental factors to promote epigenetic transgenerational inheritance of this altered evolutionary biology determinant. Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.
Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology.
Sex, Age, Specimen part
View SamplesEmbryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease.
Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior.
No sample metadata fields
View SamplesUMR106-01 osteoblastic cells are a model for studying bone mineralization. We have shown that mineralization is temporally synchronized within cultures grown under defined conditions . Cells are plated at time zero and differentiate into osteoblastic phenotype by 64 h later. If an exogenous phosphate source is added to the cultures, the cells form and deposit hydroxyapatite mineral within distinct extracellular supramolecular lipid protein complexes termed biomineralization foci (BMF) starting 12 h later. Mineralization is largely complete by 24 h later (88 h after plating). We have also shown that AEBSF, covalent serine protease inhibitor, blocks mineralization within BMF and inhibits the fragmentation of several proteins related to biomineralization. The present experiment was designed to test whether AEBSF treatment for 12 h has an effect on transcription by UMR106-01 osteoblastic cells. AEBSF is known to inactivate several serine proteases including SKI-1 (site 1, subtilisin kexin protease-1).SKI-1 functions intracellularly to activate transmembrane bound transcription factor precursors releasing the transcriptionally active N-terminal portions to imported into the nucleus. Thus, if AEBSF blocks transcription of mineralization related genes, it would support a role for SKI-1 in gene regulation in mineralizing UMR106-01 osteoblastic cells.
Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization.
Cell line
View SamplesIn this experiment, total RNA was extracted from asynchronous population of L1210 cells and hybridized to Affymetrix 430A 2.0 arrays in order to obtain an expression profile of these cells. We have previously mapped the replication timing of the entire mouse genome in this cell line, using mouse CGH arrays (see E-MEXP-1022). We wanted to validate in our system the known correlation between early replication and expression and to analyze its extent. To this end, we have measured the expression in the same cell line (L1210 cells). Two biological replicates were hybridized to 2 identical microarrays. Expression levels were highly similar between the 2 replicates (r=0.98).
Global organization of replication time zones of the mouse genome.
Cell line, Subject
View SamplesUse of expression data to analyse ovarian cancer often yields long lists of genes that do not agree across various studies. Copy number however is more stable and can reliable predict important regions of change. Using matched copy number and expressiion data helps accurately identify novel drivers of ovarian cancer.
Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.
Age, Disease stage
View SamplesThe objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Cell line
View Samples