In cervical cancer, an important mechanism by which tumour cells escape immune surveillance is loss of HLA class I, enabling tumours to evade recognition and lysis by cytotoxic T lymphocytes. Some tumours, however, escape from immune surveillance without accumulating defects in antigen presentation. We hypothesized that tumours with no or partial loss of HLA class I develop alternative mechanisms to prevent immune surveillance. To investigate this hypothesis, genome-wide expression profiling using Illumina arrays was performed on cervical squamous cell carcinomas showing overall loss of HLA class I, partial and normal HLA class I protein expression. Statistical analyses revealed no significant differences in gene expression between tumours with partial (n = 11) and normal HLA class I expression (n = 10). Comparison of tumours with normal/partial HLA class I expression (n = 21) with those with overall loss of HLA class I expression (n = 11) identified 150 differentially expressed genes. Most of these genes were involved in the defense response (n = 27), and, in particular, inflammatory and acute phase responses. Especially SerpinA1 and SerpinA3 were found to be upregulated in HLA positive tumours (3.6 and 8.2 fold, respectively), and this was confirmed by real-time PCR and immunohistochemistry. In a group of 117 tumours, high SerpinA1 and SerpinA3 expression in association with normal/partial HLA expression correlated significantly with poor overall survival (p = 0.035 and p = 0.05, respectively). This study shows that HLA positive tumours are characterized by a higher expression of genes associated with an inflammatory profile and that expression of the acute phase proteins SerpinA1 and SerpinA3 in HLA positive tumours is associated with worse prognosis.
Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma.
No sample metadata fields
View SamplesCortical tubers in patients with tuberous sclerosis complex (TSC) are associated with cognitive disability and intractable epilepsy. While these developmental malformations are believed to result from the effects of TSC1 or TSC2 Gene mutations, the molecular mechanisms leading to tuber formation during brain development as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform as a genome-wide strategy to define the Gene expression profile of cortical tubers resected during epilepsy surgery compared to histologically normal perituberal tissue (adjacent to the cortical tuber) from the same patients or autopsy control tissue.
Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors.
Specimen part, Disease, Subject
View SamplesBrucella suis infects macrophages and dendritic cells. Wild boars act as reservoirs and carriers of Brucella suis biovar 2, and there is evidence that wild boar can be the main source of infection for domestic pigs through the venereal route. Transmission through this route could be an important path for disesease dissemination. The result from this study will contribute to the overall understanding of the molecular pathogenic mechanisms involved during Brucella suis infection in European wild boar.
Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2.
Specimen part, Disease
View SamplesUnderstanding the mechanisms by which cells respond to chemotherapeutics is key to identifying means to improve therapy effiicacy while reducing systemic toxicity of these widely used classes of drugs. While determining the role of NRF2-GSH and ER stress in cells exposed to alkylating compounds such as methyl-methanesulfonate (MMS), we asked if these pathways could also be a general cell damage response relevant to other clinically used chemotherapeutics or if it is an alkylation specific response. With this intent, we performed RNA sequencing of MDA-MB231 breast cancer and U2OS osteosarcoma cells lines treated for 8 hours with a topoisomerase II inhibitor etoposide (20 µM), the antimitotic beta-tubulin-interacting drug paclitaxel (0.2 µM), doxorubicin (1 µM) and compared to MMS (40 µg/mL) treated cells. Doses represent IC50 level after 72 hours exposure. We observed that even though non-alkylating drugs, especially etoposide, caused an increase in the mRNA expression of some NRF2 and ER stress signaling markers, the number and magnitude of upregulation of genes markers in either pathway was more pronounced in alkylation treatments compared to other drugs. This indicates that alterations in NRF2 and ER stress pathways could be more likely associated with differential sensitivity to alkylating chemotherapies. Overall design: MDA-MB231 breast cancer and U2OS osteosarcoma cells lines were treated with the 72 h IC50 dose of etoposide (20 µM), paclitaxel (0.2 µM), doxorubicin (1 µM) or MMS (40 µg/mL) for 8 h, and RNA was extracted and analyzed.
Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis.
Specimen part, Cell line, Treatment, Subject
View SamplesAnaplasma phagocytophilum infects a wide variety of host species and causes the diseases granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. The objective of this research was to characterize differential gene expression in wild boar naturally infected with A. phagocytophilum by microarray hybridization using the GeneChip Porcine Genome Array
Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection.
Specimen part, Disease, Disease stage
View SamplesMolecular targeted compounds are emerging as important component to improve the efficacy of classical chemotherapeutics. In this study, we tested whether using low dose sorafenib to reduce off target inhibitions of kinases impacts the antitumor effect of alkylating agents in breast cancer models. Overall design: MDA-MB231 cells were treated with 1 µM sorafenib, 40 µg/mL MMS, or pre-incubated with 1 µM sorafenib for 12 h followed by 40 µg/mL MMS, each in two independent experiments. RNA was harvested 8 and 24 h, or post MMS treatment for combination treatment.
Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells.
Specimen part, Cell line, Subject
View SamplesEwing's sarcoma family of tumors (ESFT) is an aggressive pediatric bone and soft tissue cancer. It is the prototypical example of mesenchymal tumors driven by a fusion oncogene involving the ewing sarcoma break point region 1 (EWSR1) gene, most frequently– EWS-FLI1. We have discovered that loss of EWSR1 leads to accumulation of R-loops, replication stress and impaired homologous recombination, recapitulating breast cancer 1, early onset (BRCA1) deficiency. EWS-FLI1 acts dominant negatively in ESFT to impart the same phenotypes. Further we demonstrate that in ESFT, BRCA1 predominantly associates with the elongating transcription machinery and is unavailable for DNA strand break repair. Gene expression profiling identified upregulated compensatory mechanisms in ESFT cells to process increased R-loops (RNASEH2 and FEN1) and replication stress (Fanconi Anemia). Taken together, our data identifies BRCA1 sequestration due to transcription stress as the mechanistic basis for ESFT chemosensitivity and suggests potential targets for the much lacking second-line therapy. Overall design: Examination of gene expression of four ESFT cell lines and two control cell lines. Cells were treated to LD65 dose of etoposideand samples collected at 6 hour intervals over 24 hours
EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma.
No sample metadata fields
View SamplesGene expression data obtained from induced pluripotent stem cells derived from wild type fibroblasts (iPSc WT) and from Gaucher Disease type 2 fibroblasts (GD iPSc). Also, gene expression analysis from the initial fibroblasts was made (WT fibroblasts and GD- fibroblasts), as well as gene expression analysis from a human embryonic stem cell line (hES4).
Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds.
Specimen part, Cell line
View SamplesUMR106-01 osteoblastic cells are a model for studying bone mineralization. We have shown that mineralization is temporally synchronized within cultures grown under defined conditions . Cells are plated at time zero and differentiate into osteoblastic phenotype by 64 h later. If an exogenous phosphate source is added to the cultures, the cells form and deposit hydroxyapatite mineral within distinct extracellular supramolecular lipid protein complexes termed biomineralization foci (BMF) starting 12 h later. Mineralization is largely complete by 24 h later (88 h after plating). We have also shown that AEBSF, covalent serine protease inhibitor, blocks mineralization within BMF and inhibits the fragmentation of several proteins related to biomineralization. The present experiment was designed to test whether AEBSF treatment for 12 h has an effect on transcription by UMR106-01 osteoblastic cells. AEBSF is known to inactivate several serine proteases including SKI-1 (site 1, subtilisin kexin protease-1).SKI-1 functions intracellularly to activate transmembrane bound transcription factor precursors releasing the transcriptionally active N-terminal portions to imported into the nucleus. Thus, if AEBSF blocks transcription of mineralization related genes, it would support a role for SKI-1 in gene regulation in mineralizing UMR106-01 osteoblastic cells.
Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization.
Cell line
View SamplesUse of expression data to analyse ovarian cancer often yields long lists of genes that do not agree across various studies. Copy number however is more stable and can reliable predict important regions of change. Using matched copy number and expressiion data helps accurately identify novel drivers of ovarian cancer.
Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.
Age, Disease stage
View Samples