Neural precursor cells (NPCs) in the mammalian neocortex generate various neuronal and glial cell types in a developmental stage-dependent manner. Most neocortical NPCs lose their neurogenic potential after birth. We have previously shown that high mobility group A (HMGA) proteins confer the neurogenic potential on early-stage NPCs during the midgestation period, although the underlying mechanisms are not fully understood. Here we performed microarray analysis and compared expression profiles between control and HMGA2-overexpressed NPCs.
IMP2 regulates differentiation potentials of mouse neocortical neural precursor cells.
Specimen part
View SamplesNeural precursor cells (NPCs) are multipotent cells that can generate neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system. Although Zbtb20 was expressed in NPCs, its functions in neural development are not fully understood. We performed microarray analysis to examine changes in gene expression between control and Zbtb20-overexpressed NPCs.
Zbtb20 promotes astrocytogenesis during neocortical development.
Specimen part
View SamplesMicroarray gene expression profiling to identify differentially regulated genes in Musculus longissimus dorsi (MLD) of Japanese Black (JB) steers compared to Holstein steers (HS)
Transcriptome profiling of Musculus longissimus dorsi in two cattle breeds with different intramuscular fat deposition.
Sex, Specimen part
View SamplesNeural precursor cells (NPCs) are multipotent cells that can generate neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system. Although high mobility group nucleosomal binding domain 1 (HMGN1) was highly expressed in NPCs, its functions in neural development are not fully understood. We performed microarray analysis to examine changes in gene expression between control and HMGN1-overexpressed NPCs.
High mobility group nucleosome-binding family proteins promote astrocyte differentiation of neural precursor cells.
Specimen part
View SamplesLeber congenital amaurosis (LCA) includes congenital or early-onset blinding diseases, characterized by vision loss together with nystagmus and nonrecordable electroretinogram (ERG). At least 19 genes are associated with LCA. While most LCA is recessive, mutations in the homeodomain transcription factor gene CRX lead to autosomal dominant LCA. The mechanism of CRX-LCA is not understood. Here, we report a new spontaneous mouse mutant carrying a frameshift mutation in Crx (CrxRip). We show that, unlike Crx-/- mouse retina, the dominant Crx c.763del1 mutation in CrxRip results in congenital blindness with complete loss of ERG, yet the photoreceptors do not degenerate. Dominant CRX frameshift mutations associated with LCA mimic the CrxRip phenotype that can be rescued by Crx. RNA-Seq profiling reveals progressive and complete loss of rod differentiation factor Nrl in CrxRip, while residual Nrl remains in Crx-/- retina. Moreover, Nrl partially restores the rod phenotype in CrxRip/+ mice. We show that the binding of Otx2 to Nrl promoter is obliterated in CrxRip mutant, and ectopic Otx2 can rescue the rod phenotype. Therefore, Otx2 is required to maintain Nrl expression in developing rods to consolidate rod fate. Our studies provide the mechanism of congenital blindness caused by dominant CRX mutations and should assist in therapeutic design. Overall design: Retinal samples were harvested from WT, CrxRip/+, CrxRip/Rip, Crx-/- and Nrl-/- retina at postnatal days 2 and 21 for whole transcriptome sequencing (RNAseq). Each sample included 2 independent frozen retina and experiments were performed in duplicates. RNA-seq transcriptome libraries were constructed from 1 µg of total RNA.
OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness.
No sample metadata fields
View SamplesProtoplasmic astrocytes in layers II to VI of the mammalian neocortex have historically been thought to comprise a homogeneous population. Given that layer-specific neuronal subtypes play essential roles in cortical circuitry, astrocytes might also be expected to support and modify this circuitry in a layer-specific manner. In order to investigate whether protoplasmic astrocytes exhibit layer-specific heterogeneity, we compared the gene expression profiles of astrocytes between upper layers (layers II to IV) and deep layers (layers V and VI). Although most genes known to be preferentially expressed in astrocytes (astrocyte-enriched genes) were equally expressed between upper-layer astrocytes and deep-layer astrocytes, some such genes (astrocyte-enriched genes or genes with known function in astrocytes) were significantly enriched in upper-layer astrocytes or deep-layer astrocytes. Overall design: With the use of fluorescence-activated cell sorting (FACS), we prepared upper-layer astrocytes and deep-layer astrocytes from the corresponding dissected layers of the somatosensory cortex of Aldh1l1-eGFP mice, in which all astrocytes are expected to be labeled with GFP. The meninges, layer I, and the corpus callosum were removed from upper- and deep-layer tissue samples. In addition, parts of layers IV and V were lost during separation of these layers in such a way as to prevent cross-contamination between the upper- and deep-layer samples. Total RNA from upper-layer astrocytes and deep-layer astrocytes (n = 3 brains from 4-week-old male mice) was isolated from sorted cells with TRIzol (Invitrogen) or RNAiso Plus (Takara) and was then subjected to reverse transcription with the use of a SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech). Bar-coded libraries were prepared with a Nextera XT DNA Library Preparation Kit (Illumina), and single-end 36-bp sequencing was performed with a HiSeq 2500 instrument (Illumina).
Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.
Specimen part, Subject
View SamplesTo better understand the mechanistic basis of aging and its relationship with retinal degeneration, we examined gene expression changes in aging rod photoreceptors. Rod photoreceptor cell death is a feature of normal retinal aging and is accelerated in many retinal degenerative diseases, including AMD, the leading cause of untreatable adult blindness in the United States and other western countries. To our knowledge, the examination of age-related gene expression changes in a specific neuronal cell-type is novel, and it has allowed us to identify significant age-related changes with better resolution than is possible with whole retina samples. We used flow cytometry and a transgenic mouse with GFP-tagged rod photoreceptors to purify this specific cell population, and gene expression changes were evaluated at three time points using microarrays and quantitative RT-PCR. Our results suggest that aging is progressive, beginning even in young adult mice. Although rod photoreceptors are highly specialized neurons, our analyses revealed changes in consensus pathways of aging, including oxidative phosphorylation and stress responses affecting transcription and inflammation. In addition, we identified stress response processes that may be especially relevant for the aging retina and retinal diseases, such as angiogenesis and nuclear receptor signaling pathways that affect retinoid and lipid metabolism.
Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases.
Age, Specimen part
View SamplesThalamocortical axons pass through the prethalamus in the first step of their neural circuit formation Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting.
Development of the prethalamus is crucial for thalamocortical projection formation and is regulated by Olig2.
Specimen part
View SamplesQuantitative phosphoproteome and transcriptome analysis of ligand-stimulated MCF-7 human breast cancer cells was performed to understand the mechanisms of tamoxifen resistance at a systems level. Phosphoproteome data revealed that wild type (WT) cells were more enriched with phospho-proteins than tamoxifen-resistant (TamR) cells after stimulation with ligands. Surprisingly, decreased phosphorylation after ligand perturbation was more common than increased phosphorylation. In particular, 17beta-estradiol (E2) induced down-regulation in WT cells at a very high rate. E2 and the ErbB ligand, heregulin (HRG) induced almost equal numbers of up-regulated phospho-proteins in WT cells. Pathway and motif activity analyses using transcriptome data additionally suggested that deregulated activation of GSK3B(glycogen synthase kinase 3 beta) and MAPK1/3 signaling might be associated with altered activation of CREB and AP-1 transcription factors in TamR cells and this hypothesis was validated by reporter assays. An examination of clinical samples revealed that, inhibitory phosphorylation of GSK3B at serine 9 was significantly lower in tamoxifen-treated breast cancer patients that eventually had relapses, implying that activation of GSK3B may be associated with the tamoxifen resistant phenotype. Thus, the combined phosphoproteome and transcriptome dataset analyses revealed distinct signal-transcription programs in tumor cells and provided a novel molecular target to understand tamoxifen resistance.
Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer.
Sex, Age, Specimen part, Disease, Cell line, Treatment, Race, Time
View SamplesPlant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in Cys biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidposis thaliana. Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favour of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to Cd. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under non-stress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. To further elucidate the specific function(s) of the OAS-A1 isoform in the adaptation response to cadmium we extended the trasncriptome experiment to the wild type and oas-a1.1 mutant plants exposed to Cd. The comparison of transcriptomic profiles showed a higher proportion of genes with altered expression in the mutant than in the wild type, highlighting up-regulated genes identified as of the general oxidative stress response rather than metal-responsive genes.
Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.
Specimen part
View Samples