Innate sensing of viruses by dendritic cells (DCs) is critical for the initiation of anti-viral adaptive immune responses. Virus, however, have evolved to suppress immune activation in infected cells. We now analyze the susceptibility of different populations of dendritic cells to viral infections. We find that circulating human CD1c+ DCs support infection by HIV and influenza virus. Viral infection of CD1c+ DCs is essential for virus-specific CD8+ T cell activation and cytosolic sensing of the virus. In contrast, circulating human CD141+ DCs and pDCs constitutively limit viral fusion. The small GTPase RAB15 mediates this differential viral resistance in DC subsets through selective expression in CD141+ DCs and pDCs. Therefore, dendritic cell sub-populations evolved constitutive resistance mechanisms to mitigate viral infection during induction of antiviral immune response. Overall design: Examination of transcriptional profiles in 4 DC subsets purified from 3 donors using RNASeq
Constitutive resistance to viral infection in human CD141<sup>+</sup> dendritic cells.
No sample metadata fields
View SamplesThe histone methyltransferase Suv39h1 silences transcriptional programs during CD8+-T cell differentiation
The epigenetic control of stemness in CD8<sup>+</sup> T cell fate commitment.
Specimen part
View SamplesGlucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.
Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.
Age
View SamplesWe analyzed the transcriptomes of human dendritic cells and macrophages derived from monocytes using MCSF + IL-4 + TNFa, or IL-34 + IL-4 + TNFa, or dendritic cells derived from monocytes using GMCSF + IL-4.
Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages.
Specimen part, Treatment, Subject
View SamplesWe performed single-cell RNA-seq on CD14+ monocytes isolated from the blood of healthy donors. Using the 10x chromium technology, we analyzed 425 and 431 cells from 2 individual donors. Overall design: Peripheral Blood Mononuclear Cells (PBMC) were prepared by centrifugation on a Ficoll gradient. Blood CD14+ monocytes were isolated from healthy donors' PBMC by positive selection using magnetic beads. Monocytes were 93-95% CD14+CD16- as assessed by flow cytometry. Cellular suspensions (1700 cells) were loaded on a 10X Chromium instrument (10X Genomics) according to manufacturer's protocol.
Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages.
Specimen part, Subject
View SamplesMaintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt that of various somatic cell types. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer. Overall design: Transcriptome profiling of 13hpf sorted germ cells of zebrafish embryos injected with either control or dead end Morpholino
The Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation.
Specimen part, Cell line, Subject
View SamplesWe performed single-cell RNA-seq on CD4 T cells isolated from the tonsils of one healthy donor. We used the 10x chromium technology. Overall design: Tonsil CD4 T cells were enriched by negative selection using magnetic beads. Cell populations (CXCR5+PD-1low T cells, CXCR5+PD-1int T cells and CXCR5+PD-1high T cells ) were further isolated by cell sorting. Cellular suspensions (3500 cells) were loaded on a 10X Chromium instrument (10X Genomics) according to manufacturer's protocol.
Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses.
Subject
View SamplesWe performed single-cell RNA-seq on CD14+ cells isolated from the tonsils of one healthy donor. We used the 10x chromium technology. Overall design: Tonsil phagocytes were prepared by centrifugation on a Ficoll gradient. Dendritic cells and macrophages were enriched by negative selection using magnetic beads. Cell populations were further isolated by cell sorting. Cellular suspensions (3500 cells) were loaded on a 10X Chromium instrument (10X Genomics) according to manufacturer's protocol.
Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses.
Subject
View SamplesA better understanding of molecular changes during oral tumorigenesis may help defining new personalized prevention strategies. In order to test this hypothesis, we analyzed whole-genome expression changes in a murine model of oral carcinogenesis, induced by an oral carcinogen (4-NQO)
The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.
Sex, Specimen part
View SamplesThis data provides evidence that elevation of cAMP levels has a dramatic effect on the transcriptome of yeast cells, with particular emphasis on mitochondrial function and the promotion of ROS production
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.
Treatment
View Samples