This SuperSeries is composed of the SubSeries listed below.
Gaucher disease: transcriptome analyses using microarray or mRNA sequencing in a Gba1 mutant mouse model treated with velaglucerase alfa or imiglucerase.
Age, Specimen part, Treatment
View SamplesThe comparative whole genome transcriptome effects of two similar pharmaceuticals, imig or vela, on a Gaucher disease mouse model, 9V/null, were evaluated by two commonly used platforms, mRNA-Seq and microarray. Also, statistical methods, DESeq and edgeR for mRNA-Seq and Mixed Model ANOVA for microarray, were compared for differential gene expression detection. The biological pathways were similar between two platforms. Cell growth and proliferation, cell cycle, heme metabolism, and mitochondrial dysfunction were the most altered functions associated with the disease process. Although the two biopharmaceuticals have a very similar structure and function, imig- and vela- treatment in the mice differentially affected disease-specific pathways indicating the action of the two drugs on the disease process in the visceral tissues of Gaucher mouse model differ significantly at the molecular level. This study provides a comprehensive comparison between the two platforms (mRNA-Seq and microarray) for gene expression analysis and addresses the contribution of the different methods involved in the analysis of such data. The results also provide insights into the differential molecular effects of two similar biopharmaceuticals for Gaucher disease treatment Overall design: 9V/null mice (Gaucher mouse model) were injected weekly via tail vein with 60U/kg/wk of imig or vela for 8 wks. Control 9V/null mice were injected with same volume of saline. Wt mice were untreated. Age and strain matched mice were used for the study. Also, statistical methods, DESeq and edgeR for mRNA-Seq and Mixed Model ANOVA for microarray, were compared for differential gene expression detection. Cell growth and proliferation, cell cycle, heme metabolism, and mitochondrial dysfunction were the most altered functions associated with the disease process. The results also provide insights into the differential molecular effects of two similar biopharmaceuticals for Gaucher disease treatment.
Gaucher disease: transcriptome analyses using microarray or mRNA sequencing in a Gba1 mutant mouse model treated with velaglucerase alfa or imiglucerase.
Age, Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gaucher disease: transcriptome analyses using microarray or mRNA sequencing in a Gba1 mutant mouse model treated with velaglucerase alfa or imiglucerase.
Age, Specimen part, Treatment
View SamplesGaucher disease type 1 is an inborn error of metabolic disease with the defective activity of the lysosomal enzyme acid b-glucosidase (GCase). Enzyme replacement/reconstitution therapy (ERT), infusions with purified recombinant GCases, is efficacious in reversing hematologic, hepatic, splenic, and bony disease manifestations in Gaucher type 1 patients. However, the tissue specific molecular events in Gaucher disease and their response to therapy are not known yet. To explore the molecular events underlying GCase treatment, we evaluated the tissue-specific gene expression profiles and molecular responses in our Gaucher disease mouse model, which were treated with two FDA approved commercially available GCases, imiglucerase (imig) and velaglucerase alfa (vela). Using microarray and mRNA-Seq techniques, differentially expressed genes (DEGs) were identified in the spleen and liver by the direct comparison of imig- vs. vela- treated mice. Among them three gene expression networks were derived from these spleens: 1) cell division/proliferation, 2) hematopoietic system and 3) inflammatory/macrophage response. Our study showed the occurrence of differential molecular pathophysiologic processes in the mice treated with imig compared with vela even though these two biosimilars had the same histological and biochemical efficacy Overall design: 9V/null mice (Gaucher mouse model) were injected weekly via tail vein with 60U/kg/wk of imig or vela for 8 wks. To understand the molecular events underlying GCase treatment, we evaluated the tissue-specific gene expression profiles and molecular responses in our Gaucher disease mouse model, which were treated with two FDA approved commercially available GCases, imiglucerase (imig) and velaglucerase alfa (vela).
Gaucher disease: transcriptome analyses using microarray or mRNA sequencing in a Gba1 mutant mouse model treated with velaglucerase alfa or imiglucerase.
Age, Specimen part, Treatment, Subject
View SamplesAnalysis of genes that were differentially expressed in axolotl extract reprogrammed tumour xenografts compared to untreated controls. The study provided insight into the biological processes, signalling pathways and gene networks affected by the oocyte extract treatment which resulted in halted tumour growth in mice.
Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy.
Specimen part, Treatment
View SamplesDifferencies between groups between pre and post haematopoietic stem cell transplantation children
Genetic Background of Immune Complications after Allogeneic Hematopoietic Stem Cell Transplantation in Children.
Specimen part, Disease stage
View SamplesMyogenic differentiation relies on Pax7 function. We used embryonic stem cells lacking functional Pax7 to follow its role in derivation of skeletal myoblasts.
Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene.
No sample metadata fields
View SamplesMyogenic differentiation relies on Pax7 function. We used mouse embryonic fibroblasts lacking functional Pax7 to follow its role in terminally differentiated cells.
Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7.
Specimen part
View SamplesProsaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipids hydrolases in lysosomes. To explore the molecular mechanism(s) of disease progression, temporal transcriptome microarray analyses of cerebrum and cerebellum tissues were conducted using mRNA from three prosaposin deficiency mouse models: PS-NA (hypomorphic prosaposin deficiency), PS-/- (prosaposin null) and 4L/PS-NA (a V394L/V394L glucocerebrosidase mutation and PS-NA) mice. Our results indicate that regionally specific gene expression abnormalities preceded the histological and behavioral changes and CEBPD is a candidate regulator of brain disease in prosaposin deficiency. The alterations of gene expression are detected at birth and are more profound in cerebellum than cerebrum.
Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model.
Specimen part
View Samples