The bird cherry-oat aphid (Rhopalosiphum padi L.) (Homoptera: Aphididae) is an important pest on cereals causing plant growth reduction but no specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes involved, reducing aphid growth. In an attempt to identify candidate sequences for resistance-related genes, we performed a microarray analysis of gene expression after two days of aphid infestation in two susceptible barley lines and two genotypes with partial resistance. One of the four lines is a descendant of two of the other genotypes. The analysis revealed large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in the aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only twenty-four genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated and none of those was common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines, and results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for both induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a Ser/Thr kinase and several thionins.
Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A macrophage gene expression signature defines a field effect in the lung tumor microenvironment.
No sample metadata fields
View SamplesAJ mouse is susceptible to lung carcinogenesis from urethane treatment and is a good model for human adenocarcinoma. We completed a study using microarray analysis of bronchoalveolar lavage cells from control or urethane treated mice. A unique macrophage expression signature in the lung tumor microenvironment was able to correctly classify the lavage samples.
A macrophage gene expression signature defines a field effect in the lung tumor microenvironment.
No sample metadata fields
View SamplesWe treated intestinal enteroids continuously for 6 days with or without TgfbR1/2 inhibitor (LY2109761) or Tgfb1 ligand
Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation.
Specimen part
View SamplesWe treated intestinal organoids continuously for 5 days with or without TgfbR1/2 inhibitor (LY2109761) or Tgfb1 ligand
Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation.
Specimen part, Treatment
View SamplesThe CD19 positive antibody secreting cells (ASC) in both bone marrow (BM) have the capacity to provide immune memory in addition to cells traditionally considered long-lived, the CD19-negative BM ASC. We performed flow cytometry (FCM) immunophenotyping, fluorescence-activated cell sorting (FACS) for cell subset isolation, ELISpot assays detecting the isotype of antibody secretion as well as antibodies against vaccine derived antigens, and comparative gene expression analyses of CD19- ASC, CD19+ ASC, CD20- B cells, and CD20+ B cells from BM. The findings may aid in the understanding of the differential cell subsets created through vaccination and lead to improved vaccine strategies and production. FACS sorted tissue B cells and antibody secreting cell subset gene expression.
CD19-positive antibody-secreting cells provide immune memory.
Specimen part
View SamplesQuiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells.
Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources.
Specimen part, Disease, Subject
View SamplesPurpose: Majority of pancreatic cancer (PDAC) patient deaths are associated to the metastatic progression of disease. To identify novel targeted-therapies, a complete understanding of transformation in genetic landscape in tumors during disease progression is needed. Widely in use, the artificially immortalized PDAC cell lines do not rightly represent the progression because of multiple donors and disparate genetic characteristics. To identify key genes underlying the progression of PDAC from localized disease to a metastatic form, we performed whole transcriptome RNA-Sequencing analysis of cell models representing localised to metaststic stage through paired-end deep sequencing Method: Mouse expressing a Cre-activated KrasG12D allele inserted into the endogenous Kras locus, and these mice were crossed with mice expressing Cre recombinase in pancreatic tissue by virtue of a PDX-1 promoter-driven transgene. Next a cross between K-rasG12D Pdx-Cre and p16-/- mice, transgenic K-rasG12D Pdx-Cre p16-/- mice were generated harboring tissue specific mutant Kras and p16 deletion resulting in an earlier appearance of PanIN lesions followed by rapid progression into highly invasive and metastatic pancreatic cancers. Results: Transgenic K-rasG12D Pdx-Cre p16-/- mice developed spontaneous- localized, invasive and metastatic pancreatic tumors and transcriptome of these cell models representing localized, invasive and metastatic pancreatic tumors were sequenced. Conclusions: Based on genetic analysis of a same-lineage genetic background cell models, this study identifies a novel molecular pathway underlying the progression of pancreatic cancer disease. This study shows that Intestine Specific Homeobox (ISX) gene is a novel biomarker unique to pancreatic cancer progression. Overall design: By using tumors from K-rasG12D/p16-/- transgenic mice, we generated a spectrum of spontaneous (without immortalization) murine cell models representing localized (HI-Panc-L), invaise (HI-Panc-I) and metastatic (HI-Panc-M) stages. HI-Panc progression model is a valuable tool and by studying gene expression during progression of pancaretic cancer from localised to metaststic stage in a genetically same linaege wll be beneificail for pancartic cancer reaserch.
Characterization of Novel Murine and Human PDAC Cell Models: Identifying the Role of Intestine Specific Homeobox Gene ISX in Hypoxia and Disease Progression.
Specimen part, Subject
View SamplesMicroarray studies revealed that as a first hit, SV40 T/t-antigen causes deregulation of 462 genes in mammary gland cells (ME-cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell-proliferation specific and Rb-E2F dependent, causing ME-cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells, a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture, breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal-ME-cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal-ME-cells. The profile of retransformants shows that only 38 deregulated genes appear to be tumor-relevant and that none of them is considered to be a typical breast cancer gene.
Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.
No sample metadata fields
View SamplesThe goal of this study was to identify genes which are differentiatlly expresesd upon induced inactivation of Rfx6 in beta cell in adult mice Overall design: Rfx6fl/fl; Ins1-CreERT2 (mut) and Rfx6fl/fl (ctrl) 8 weeks old mice were injected subcutaneously with tamoxifen daily during 3 days. Pancreatic islets were isolated 5 days after the first injection and RNA purified.
Rfx6 maintains the functional identity of adult pancreatic β cells.
No sample metadata fields
View Samples