This SuperSeries is composed of the SubSeries listed below.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View SamplesThe aim of this study was to describe the gene expression patterns related to the differentiation and mineralization of bone-forming cells, including activation and/or repression of osteogenic or non-osteogenic pathways, remodeling of cell architecture, cell adhesion, cell communication, and assembly of extracellular matrix. The study implied patient selection, tissue collection, isolation and culture of human marrow stromal cells (hMSC) and osteoblasts (hOB), and characterization of bone-forming cells. RNA samples were collected at defined time points, in order to understand the regulation of gene expression during the processes of cell differentiation/mineralization that occur during bone repair. Transcriptome analysis was performed by using the Affymetrix GeneChip microarray technology platform and GeneChip Human Genome U133 Plus 2.0 Array. Our results help to design a gene expression profile of bone-forming cells during specific steps of osteogenic differentiation. These findings offer an useful tool to monitor the behaviour of osteogenic precursors cultured in presence of exogenous stimuli, i.e. growth factors, or onto 3D scaffolds for bone engineering. Moreover, they can contribute to identify and clarify the role of new genes for a better understanding of the molecular mechanisms regulating osteogenesis.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View SamplesThe aim of this study was to describe the gene expression patterns related to the differentiation and mineralization of bone-forming cells, including activation and/or repression of osteogenic or non-osteogenic pathways, remodeling of cell architecture, cell adhesion, cell communication, and assembly of extracellular matrix. The study implied patient selection, tissue collection, isolation and culture of human marrow stromal cells (hMSC) and osteoblasts (hOB), and characterization of bone-forming cells. RNA samples were collected at defined time points, in order to understand the regulation of gene expression during the processes of cell differentiation/mineralization that occur during bone repair. Transcriptome analysis was performed by using the Affymetrix GeneChip microarray technology platform and GeneChip Human Genome U133 Plus 2.0 Array. Our results help to design a gene expression profile of bone-forming cells during specific steps of osteogenic differentiation. These findings offer an useful tool to monitor the behaviour of osteogenic precursors cultured in presence of exogenous stimuli, i.e. growth factors, or onto 3D scaffolds for bone engineering. Moreover, they can contribute to identify and clarify the role of new genes for a better understanding of the molecular mechanisms regulating osteogenesis.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View SamplesThe aim of this study was to describe the gene expression patterns related to the differentiation and mineralization of bone-forming cells, including activation and/or repression of osteogenic or non-osteogenic pathways, remodeling of cell architecture, cell adhesion, cell communication, and assembly of extracellular matrix. The study implied patient selection, tissue collection, isolation and culture of human marrow stromal cells (hMSC) and osteoblasts (hOB), and characterization of bone-forming cells. RNA samples were collected at defined time points, in order to understand the regulation of gene expression during the processes of cell differentiation/mineralization that occur during bone repair. Transcriptome analysis was performed by using the Affymetrix GeneChip microarray technology platform and GeneChip Human Genome U133 Plus 2.0 Array. Our results help to design a gene expression profile of bone-forming cells during specific steps of osteogenic differentiation. These findings offer an useful tool to monitor the behaviour of osteogenic precursors cultured in presence of exogenous stimuli, i.e. growth factors, or onto 3D scaffolds for bone engineering. Moreover, they can contribute to identify and clarify the role of new genes for a better understanding of the molecular mechanisms regulating osteogenesis.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View SamplesDespite over 3,000 articles published on dystrophin in the last 15 years, the reasons underlying the progression of the human disease, differential muscle involvement, and disparate phenotypes in different species are not understood. The present experiment employed a screen of 12,488 mRNAs in 16-wk-old mouse mdx muscle at a time when the skeletal muscle is avoiding severe dystrophic pathophysiology, despite the absence of a functional dystrophin protein. A number of transcripts whose levels differed between the mdx and human Duchenne muscular dystrophy were noted. A fourfold decrease in myostatin mRNA in the mdx muscle was noted. Differential upregulation of actin-related protein 2/3 (subunit 4), beta-thymosin, calponin, mast cell chymase, and guanidinoacetate methyltransferase mRNA in the more benign mdx was also observed. Transcripts for oxidative and glycolytic enzymes in mdx muscle were not downregulated. These discrepancies could provide candidates for salvage pathways that maintain skeletal muscle integrity in the absence of a functional dystrophin protein in mdx skeletal muscle.
Regenerated mdx mouse skeletal muscle shows differential mRNA expression.
No sample metadata fields
View SamplesDrought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at transcription levels in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme (NADP-ME) and pyruvate dehydrogenase (PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase (CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase (ALDH), ascorbate-dependant oxidoreductase (ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8 (HSP17.8) and dehydrin 3 (DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were likely constitutively expressed in drought-tolerant genotypes. Among them, 7 known annotated genes might enhance drought tolerance through signaling (such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP), anti-senescence (G2 pea dark accumulated protein GDA2) and detoxification (glutathione S-transferase (GST) pathways. In addition, 18 genes, including those encoding l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C) and several chaperones, were differentially expressed in all genotypes under drought; thus, they were more likely general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
Specimen part, Treatment
View SamplesSeveral reports have focused on the identification of biological elements involved in the development of abnormal systemic biochemical alterations in chronic kidney disease, but this abundant literature results most of the time fragmented. To better define the cellular machinery associated to this condition, we employed an innovative high-throughput approach based on a whole transcriptomic analysis and classical biomolecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both chronic kidney disease patients in conservative treatment (CKD, n=9) and hemodialysis (HD, n=17) compared to healthy subjects (NORM) (p<0.001, FDR=1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system (OXPHOS). Western blotting for COXI and COXIV, key constituents of the complex IV of OXPHOS, performed on an independent testing-group (12 NORM, 10 CKD and 14 HD) confirmed the elevated synthesis of these subunits in CKD/HD patients. However, complex IV activity was significantly reduced in CKD/HD patients compared to NORM (p<0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to NORM. Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress.
Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease.
Disease, Treatment, Subject
View SamplesMicroenvironment is known to influence cancer drug response and sustain resistance to therapies targeting receptor-tyrosine kinases. However if and how tumor microenvironment can be altered during treatment, contributing to resistance onset is not known. Here we show that, under prolonged treatment with tyrosine kinase inhibitors (TKIs), EGFR- or MET-addicted cancer cells displayed a metabolic shift towards increased glycolysis and lactate production. We identified secreted lactate as the key molecule able to instruct Cancer Associated Fibroblasts (CAFs) to produce Hepatocyte Growth Factor (HGF) in a NF-KB dependent manner. Increased HGF, activating MET-dependent signaling in cancer cells, sustained resistance to TKIs. Functional targeting or pharmacological inhibition of lactate dehydrogenase prevented and overcame in vivo resistance, demonstrating the crucial role of this metabolite in the adaptive process. This non-cell-autonomous, adaptive resistance mechanism was observed in NSCLC patients progressed on EGFR TKIs, demonstrating the clinical relevance of our findings and opening novel scenarios in the challenge to drug resistance Overall design: RNA-seq analysis of 2 different samples, each one with 2 biological replicates (4 sequencing runs in total).
Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies.
Specimen part, Subject
View SamplesAlternative promoters (APs) occur in >30% protein-coding genes and contribute to proteome diversity. However, large-scale analyses of AP regulation are lacking, and little is known about their potential physiopathologic significance. To better understand the transcriptomic impact of estrogens, which play a major role in breast cancer, we analyzed gene and AP regulation by estradiol in MCF7 cells using pan-genomic exon arrays. We thereby identified novel estrogen-regulated genes, and determined the regulation of AP-encoded transcripts in 150 regulated genes. In <30% cases, APs were regulated in a similar manner by estradiol, while in >70% cases, they were regulated differentially. The patterns of AP regulation correlated with the patterns of estrogen receptor (ER) and CCCTC-binding factor (CTCF) binding sites at regulated gene loci. Interestingly, among genes with differentially regulated APs, we identified cases where estradiol regulated APs in an opposite manner, sometimes without affecting global gene expression levels. This promoter switch was mediated by the DDX5/DDX17 family of ER coregulators. Finally, genes with differentially regulated promoters were preferentially involved in specific processes (e.g., cell structure and motility, and cell cycle). We show in particular that isoforms encoded by the NET1 gene APs, which are inversely regulated by estradiol, play distinct roles in cell adhesion and cell cycle regulation, and that their expression is differentially associated with prognosis in ER+ breast cancer. Altogether, this study identifies the patterns of AP regulation in estrogen-regulated genes, demonstrates the contribution of AP-encoded isoforms to the estradiol-regulated transcriptome, as well as their physiopathologic significance in breast cancer.
Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer.
Disease, Disease stage, Cell line, Time
View SamplesThis study was designed to identify candidate genes associated with iron efficiency in soybeans. Two genotypes, Clark (PI548553) and IsoClark (PI547430), were grown in both iron sufficient (100uM Fe(NO3)3) and iron deficient (50uM Fe(NO3)3) hydroponics conditions. The second trifoliate was harvested for RNA extraction for the microarray experiment. Candidate genes were identified by comparing gene expression profiles within genotypes between the two iron growth conditions.
Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response.
No sample metadata fields
View Samples