E47 is a basic Helix Loop Helix (bHLH) transcription factor that has important roles in cell fate determination and differentiation of many cell types. In the nervous system E47 heterodimerizes with tissue-specific, pro-neural bHLH transcription factors and activates downstream target genes. To identify the relevant target genes of bHLH transcription factors in neural cells, we performed gene expression profiling of the human neuroblastoma cell line SK-N-SH engineered to acutely express ectopic E47 by an adenoviral vector. The experiments were done at two time points following adenoviral infection, 8 hours and 20 hours. Genes induced by E47 after 8 hours are likely to be direct targets of this transcription factor.
Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth.
Specimen part, Cell line, Time
View SamplesAdipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from the development of inflammation and obesity under normal feeding conditions, and the progression to metabolic dysfunction under dietary stress. Genetic ablation of SIRT1 from adipose tissue leads to gene expression changes that highly overlap with changes induced by high fat diet in wild type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high fat diet induces the cleavage of SIRT1 in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.
No sample metadata fields
View SamplesThe strength of T cell stimulation determines IL-7 responsiveness, recall potential and lineage commitment of primed human CD4+IL-7Rhi T cells
The strength of T cell stimulation determines IL-7 responsiveness, secondary expansion, and lineage commitment of primed human CD4+IL-7Rhi T cells.
No sample metadata fields
View SamplesWe analyzed gene expression profiles of myeloma cells belonging to the group of bas prognosis RPMI 8226 and LP1 expressing either the GFP protein or a cyclin D1-GFP fusion protein
Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study.
Age
View SamplesThe contribution of copy number (CN)-altered genes in cervical carcinogenesis is unknown owing to a lack of correlation with gene expression. We mapped CN-altered genes in 31 cervical cancers (CCs), and investigated the expression of 21,000 genes in 55 CCs using microarrays. Biological processes associated with genes deregulated by gene dosage and the relationship between gene dosage and patient survival were investigated. CN-altered genome (CN-AG) percentages varied widely among tumors from 0% to 32.2% (mean = 8.1 8.9). Tumors were classified as low (mean = 0.5 0.6, n = 11), medium (mean = 5.4 2.4, n = 10), or high (mean = 19.2 6.6, n = 10) CN. The highest %CN-AG was found in 3q, which contributed an average of 55% of all CN alterations. Genome-wide, only 5.3% of CN-altered genes were deregulated by gene dosage; by contrast, the rate in fully duplicated 3q was twice as high. Amplification of 3q explained 23.6% of deregulated genes in whole tumors (r2 = 0.236, p = 0.006; analysis of variance), including those in 3q and other chromosomes. A total of 862 genes were deregulated exclusively in high-CN tumors, but only 22.9% were CN altered. This result suggests that the remaining genes are not deregulated directly by gene dosage but by mechanisms induced in trans by CN-altered genes. Anaphase-promoting complex/cyclosome (APC/C)-dependent proteasome proteolysis, glycolysis, and apoptosis were upregulated, whereas cell adhesion and angiogenesis were downregulated exclusively in high-CN tumors. The high %CN-AG and upregulated gene expression profiles of APC/C-proteasome-dependent proteolysis and glycolysis were associated with poor patient survival, although only the first 2 correlations were statistically significant (p < 0.05, log-rank test). The data suggest that inhibitors of APC/C-dependent proteasome proteolysis and glycolysis may be useful treatments in these patients.
Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study.
Age
View SamplesSIRT1 deacetylase functions in a variety of cells and tissues to mitigate age- and disease-induced damages. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor units, and specifically alpha-motor neurons, with advancing age and during the progression of amyotrophic lateral sclerosis (ALS). Here, we show that SIRT1 expression decreases in the spinal cord of wild type mice with advancing age. Using mouse models that overexpress or inactivate SIRT1 in motor neurons, we discovered that SIRT1 prevents age-related degeneration of motor neurons' presynaptic sites at neuromuscular junctions (NMJs). We also found that increasing SIRT1 in motor neurons delays degeneration of presynaptic sites at NMJs and extends the lifespan of SOD1G93A mice. Thus, SIRT1 has a similar effect on aging and ALS-affected motor neurons, two conditions in which a remarkable number of transcripts are similarly altered in the spinal cord. These include genes involved in inflammatory and immune responses and genes with known function at synapses. These findings show that SIRT1 functions to mitigate pathological changes induced by aging and ALS, two conditions with a surprising degree of overlap in the spinal cord. Overall design: Eight replicates spinal cords from mice aged 18-24 months, eight replicates of spinal cords from mice aged 3-4 months, 3 replicates of spinal cords from ALS symptomatic mice aged 5-6 months and 3 replicates of spinal cords from wt controls aged 5-6 months.
SIRT1 deacetylase in aging-induced neuromuscular degeneration and amyotrophic lateral sclerosis.
Cell line, Subject
View SamplesAlthough Human papillomavirus infection is the main causal factor for cervical cancer (CC), there is data suggesting genetic factors could modulate the risk and progression of CC. Sibling studies suggest that maternally inherited factors could be involved in CC. To assess whether mitochondrial DNA (mtDNA) polymorphisms are associated to cervical cancer, HPV infection and HPV types, a case-control study was performed in the Mexican mestizo population. The polymorphism of mtDNA D-Loop was investigated in 187 cervical cancer patients and 270 healthy controls. D-loop was amplified from a blood DNA sample and analyzed by sequencing. HPV was detected and typed in cervical scrapes from both groups. mtDNA polymorphisms were compared in the whole samples and stratified by HPV types. The expression of 29 mitochondrial genes was analyzed in a subset of 45 tumor biopsies using the expression microarray ST1.0. The Amerindian haplogroup B2 increased the risk for CC (OR=1.6, 95% CI: 1.05-2.58) and showed an additive effect of 36% over the risk conferred by the HPV (OR=153, 95% CI: 65.4-357.5). The frequency of HPV 16, 18, 31 and 45 in cancer samples was similar in all haplogroups but one (D1). It showed a very low frequency of HPV16, any HPV18 and high frequency of HPVs 31, 45 and other types. Two mtDNA genes (MT-TD, MTTK) could be involved in the increased risk conferred by the haplogroup B2, since they were up-regulated exclusively in B2 tumors (p<0.05, t-test). These findings will contribute to clarify the importance of genetic factors in CC.
The Amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: de-regulation of mitochondrial genes may be involved.
Specimen part
View SamplesWe used microarrays to analyze the gene expression profile of CD34+CD45RA+CD7+, CD34+CD45RA+CD10+CD19- and CD34+CD45+CD7-CD10-CD19- HPCs isolated from umbilical cord blood
Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood.
Specimen part
View SamplesBrdt is a testis specific member of a family of chromatin interacting proteins. All of the family members have been shown to regulate transcription. Brdt is highly expressed in round spermatids, and may play a role in transcriptional regulation in these cells.
The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3'-UTR truncation in round spermatids.
Specimen part
View Samples