The proper balance of excitatory and inhibitory neurons is crucial to normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors, Ascl1 and Ptf1a, are essential for generating the correct number and sub-type of neurons in multiple regions of the nervous system. Â In the dorsal spinal cord, Ascl1 and Ptf1a have contrasting functions in specifying inhibitory versus excitatory neurons. To understand how Ascl1 and Ptf1a function in these processes, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a regulate the specification of excitatory and inhibitory neurons in the dorsal spinal cord through direct regulation of distinct homeodomain transcription factors known for their function in neuronal sub-type specification. Besides their roles in regulating these homeodomain factors, Ascl1 and Ptf1a each function differently during neuronal development with Ascl1 directly regulating genes with roles in several steps of the neurogenic program including, Notch signaling, neuronal differentiation, axon guidance, and synapse formation. In contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Examination of the Ascl1 and Ptf1a bound sequences shows they are enriched for a common E-Box with a GC core and with additional motifs used by Sox, Rfx, Pou, and Homeodomain factors. Ptf1a bound sequences are uniquely enriched in an E-Box with a GA/TC core and in the binding motif for its co-factor Rbpj, providing two keys to specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding for how they function in neuronal development, particularly as key regulators of homeodomain transcription factors required for neuronal sub-type specification. Overall design: Examination of gene expression in Ascl1 and Ptf1a lineage cells in the developing neural tube.
A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord.
No sample metadata fields
View SamplesTo find BMAL1-regulated genes in mice pituitary gland we performed a differential microarray from wild-type vs Bmal1-/- knock-out mice
Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF.
Sex, Specimen part
View SamplesPurpose: Nephron progenitor cells generate nephrons, the basic units of kidney. We developed methods to culture mouse and human NPCs in their self-renewal state in vitro with full nephrogenic potentials. The RNA-seq here is used to compare the global gene expression of long-term cultured mouse NPCs and their cognate freshly isolated primary NPCs Methods: mRNA profiles were generated by deep sequencing in duplicate from E11.5, E12.5, E13.5, E16.5 and P1 primary NPCs, and from long-term cultured NPCs derived from E11.5, E13.5, E16.5 and P1 (Passage 20 and Passage 80 for each cell line). To generate rpkm values from raw data, single-end 50bp reads were mapped to the UCSC mouse transcriptome (mm9) by STAR9, allowing for up to 10 mismatches (which is the default by STAR). Only the reads aligned uniquely to one genomic location were retained for subsequent analysis. And expression levels of all genes were estimated by Cufflink10 using only the reads with exact matches. Results: The gene expression levels of the "NPC-signature genes" were firstly transformed as logarithm scales. And then the program “prcomp”, a built-in program for principal component analysis in R packages, was employed with default parameters. We evaluated the variance percentage of each principal component, and found the top 3 components accounted for 84.1% of the total variance, where PC1 accounted for 46.42%, PC2 23.87% and PC3 13.81%. Those three PCs are therefore selected as candidate principal components in the further analysis. Another program “scatterplot3d” in the R packages was used to plot the 3D view of PCA, and “ggplot2” was used in 2D view of PCA. The PCA results indicate that cultured NPCs cluster together in PCA analysis while primary NPCs segregate into early (E11.5 to E13.5) and later (E16.5, P1) NPC groups. Interestingly, cultured NPCs are close to early NPCs in both PC1 and PC2 axes, suggesting that cultured NPCs are maintained in state close to early NPCs. The close cluster of P20 and P80 NPCs show the robustness of our culture condition in maintaining stable self-renewal state of NPCs. Conclusions: Our study represents the first analysis comparing the long-term cultured NPC lines we geneated with primary NPCs, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. Overall design: mRNA profiles were generated by deep sequencing in duplicate from E11.5, E12.5, E13.5, E16.5 and P1 primary NPCs, and from long-term cultured NPCs derived from E11.5, E13.5, E16.5 and P1 (Passage 20 and Passage 80 for each cell line)
3D Culture Supports Long-Term Expansion of Mouse and Human Nephrogenic Progenitors.
Specimen part, Cell line, Subject
View SamplesPurpose: To study the mechanisms involved in the regulation by NFIX on neural stem cell development and to examine the transcriptome changes associated with the loss of NFIX in neural stem cells. Methods: Subventricular zones of 10-day-old wild-type and Nfix KO mice were sectioned and dissociated into single cells. Cells were cultured in proliferation condition for 10 days. RNA was purified and poly-A selected to build the library for RNA-seq. Conclusions: Our study represents the first detailed analysis of transcriptome changes in primary monolayer-cultured neural stem cells associated with the loss of NFIX. Overall design: Cells dissociated from 10-day-old wild-type and nuclear factor I-X (Nfix KO) mice subventricular zone were cultured in DMEM/F12 with B27, Glutamine, EGF and bFGF for 10 days. RNA was harvested with Norgen RNA purification micro kit and then prepared with illumina TruSeq kit. Samples from 6 mice (3 vs. 3) were loaded on one lane. 50-cycle single-read run was performed on Hiseq 2000. The sequence reads were analyzed by TopHat 2.0.7 followed by Cufflinks 1.3.0 with the mm9 UCSC annotation files.
Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Toward Oligodendrogenesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.
Specimen part
View SamplesThe abscence of TBR2 gene in human leads to microcephaly. This condition is mimicked by the specific ablation of the murine gene in developing cerebral cortex. Herein we compared gene expression in control and Tbr2 cKO in E14.5 cerebral cortices. This approach represents a useful tool to identify the molecular mechanisms at the basis of the phenotype.
The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.
Specimen part
View SamplesReprogramming offers the possibility to study cell fate acquisitions otherwise difficult to address in vivo. By monitoring the dynamics of gene expression during direct reprogramming of astrocytes into different neuronal subtypes via the activation of Neurog2 and Ascl1, we demonstrate that these proneural factors control largely different neurogenic programs. Among the cascades induced, however, we identified a common subset of transcription factors required for both Neurog2- and Ascl1-induced reprogramming, and combinations of these factors comprising NeuroD4 were sufficient to generate functional neurons. Notably, during astrocyte maturation REST prevents Neurog2 from binding to the NeuroD4 locus that becomes then enriched with histone H4 lysine 20 tri-methylation.
Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes.
Sex, Specimen part, Treatment, Time
View SamplesThis dataset describe the transcriptomic profiling of adult brain, gonades (testis and ovaries) of adult zebrafish exposed to 20µg/L of depleted uranium for 10 days. The progeny of the exposed fishes were also analysed at two-cells stage and 96 hours post fertilization Overall design: Biological samples (adult dissected tissues and whole embryos and larvae) were tested by RNASeq in duplicates
Whole transcriptome data of zebrafish exposed to chronic dose of depleted uranium.
No sample metadata fields
View SamplesThree different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).
Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.
Subject
View SamplesTranscriptome analysis following Bcl6 induction (24h doxycycline) in mouse ES-cell-derived cortical progenitors (differentiation day 12) shows that Bcl6 promotes a neurogenic transcription program and represses selective genes of the main proliferative pathways. Overall design: RNA-seq screen for Bcl6-elicited gene expression changes in in vitro cortical progenitors (n=4)
Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways.
Treatment, Subject
View Samples