Cue-directed axon guidance depends partly on local translation in growth cones. Many mRNA transcripts are known to reside in developing axons yet little is known about their subcellular distribution or, specifically, which transcripts are in growth cones.
Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs.
Specimen part
View SamplesLocal protein synthesis in sensory neuron axons is necessary for axonal regeneration with the efficiency of regeneration decreasing with age. Because the full repertoire of transcripts in embryonic and adult rat sensory axons is unknown we asked how the pool of mRNAs dynamically changes during ageing. We isolated mRNA from pure axons and growth cones devoid of non-neuronal or cell body contamination. Genome-wide microarray analysis reveals that a previously unappreciated number of transcripts are localised in sensory axons and that this repertoire changes during development toward adulthood. Embryonic sensory axons are enriched in transcripts encoding cytoskeletal-related proteins with a role in axonal outgrowth. Surprisingly, adult axons are highly enriched in mRNAs encoding immune molecules with a role in nociception. To validate our experimental approach we show that Tubulin-beta3 mRNA is present only in embryonic axons where it is locally synthesised. In summary, we show that the population of axonal mRNAs dynamically changes during development, which may partly contribute to the intrinsic capacity of axons at different ages to regenerate after injury and to modulate pain.
Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization.
Specimen part
View SamplesThe goal of this analysis was to assess the similarity in transcriptomes between WT and Coro1-/- across regulatory and conventional T cells. Overall design: mRNA profiles of wild-type and Coronin1A knockout from murine regulatory (trg) and conventional (con) T cells were generated by deep sequencing, in triplicate, using Illumina TruSeq stranded mRNA sample kit.
Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesIn the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization. We identify specific transcription factors (Hnf4g, Creb3l3 and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan.
Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life.
Specimen part
View SamplesWe used microarrays to detail the program of gene expression underlying the growth of the plantaris muscle following synergist ablation-induced supraphysiological overload
Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.
Specimen part
View SamplesBackground: The muscularis externa (ME) of the adult intestine consists of two layers of visceral smooth muscle (VISM), the inner circular muscle (ICM) and outer longitudinal muscle (OLM), that form sequentially beginning at embryonic day (E) 13 and E15 in the developing mouse. Coordinated contraction of these two layers facilitates the movement of food down the digestive tract. Though abnormal ME function or development has been linked to pseudoobstruction and irritable bowel syndrome, little is known about the molecular character of the smooth muscle that comprises this tissue. We performed transcriptome analysis to identify genes that are enriched in intestinal mesenchyme tissue at E14.5, when the inner circular muscle (ICM) is well established. Results: Expression patterns of enriched mesenchyme genes were examined in publically available in situ databases, revealing over one hundred genes that are expressed in the ICM. Examination of the promoter regions for these genes revealed enrichment for cJUN transcription factor binding sites and cJUN itself was also enriched in ICM. A cJUN ChIP-seq at E14.5 showed that cJUN regulatory regions contained characteristics of muscle enhancers. Overall design: E14.5 mouse intestines were harvested and grown for 24 hours in a transwell culture with or without Cyclopamine treatment. Separated epithelial and mesenchyme tissue populations or whole intestines were submitted for sequencing. Three replicates for each condition were collected.
Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun.
Specimen part, Cell line, Subject
View SamplesDuring organogenesis of the intestine, reciprocal crosstalk between the endodermally-derived epithelium and the underlying mesenchyme is required for regional patterning and proper differentiation. Though both of these tissue layers participate in patterning, the mesenchyme is thought to play a prominant role in the determination of epithelial phenotype during development and in adult life. However, the molecular basis of this instructional dominance is unclear. In fact, surprisingly little is known about the cellular origins of many of the critical signaling molecules and the gene transcriptional events that they impact. Here, we profile genes that are expressed in separated mesenchymal and epithelial compartments of the perinatal mouse intestine. The data indicate that the vast majority of soluble modulators of signaling pathways such as Hedgehog, Bmp, Wnt, Fgf and Igf are expressed predominantly or exclusively by the mesenchyme, accounting for its ability to dominate instructional crosstalk. We also catalog the most highly enriched transcription factors in both compartments and find evidence for a major role for Hnf4alpha and Hnf4 gamma in the regulation of epithelial genes. Finally, we find that while epithelially enriched genes tend to be highly tissue-restricted in their expression, mesenchymally-enriched genes tend to be broadly expressed in multiple tissues. Thus, the unique tissue-specific signature that characterizes the intestinal epithelium is instructed and supported by a mesenchyme that itself expresses genes that are largely non-tissue specific.
Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk.
No sample metadata fields
View Samples