AtIPT8/pga22 seedlings (gain-of-function mutant in Ws background; Sun et al. 2003, Plant Physiology 131, pp167-176) were grown on vertical plates for 7 days in LD. The seedlings were then incubated directly on the plate with medium containing 5 uM 17-beta-estradiol (for induction of the IPT8 gene) or 5 uM trans-zeatin for 12 and 24 h. 5 mm primary root tips were harvested from the seedlings and pooled for microarray analysis. Total RNA was isolated from the samples with the RNeasy Plant Mini Kit from Qiagen.
Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction.
Specimen part, Treatment
View SamplesGold is widely considered to be a biologically inert element; however, it can elicit a profound biological response in plants. Plants can be exposed to significant levels of this precious metal in the environment from naturally occurring sources, as the result of mining activities or more recently resulting from the escalating use of nanoparticles in industry. In this microarray study we have investigated the gene expression response of Arabidopsis thaliana (Arabidopsis) to gold. Although the uptake of metal cations by plant transporters is well characterised, little is known about the uptake of gold, which exists in soil predominantly in a zero-valent state (Au0). We used this study to monitor the expression of candidate genes involved in metal uptake and transport. These show the down-regulation of a discreet number of genes known to be involved in the transport of copper, cadmium, nickel and iron.
Arabidopsis Glutathione Transferases U24 and U25 Exhibit a Range of Detoxification Activities with the Environmental Pollutant and Explosive, 2,4,6-Trinitrotoluene.
Specimen part, Treatment
View SamplesImpact of mmu-miR-337-3p on the global gene expression in murine hepatoblasts.
MicroRNA-337-3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation.
Specimen part
View SamplesThe fallopian tube transports the gametes to the fertilization site and delivers the embryo to the uterus at the optimal time for implantation. Progesterone and the classical progesterone receptor (PGR) are known to be involved in regulating both tubal ciliary beating and muscular contractions, possibly involving both genomic and non-genomic actions. To provide more clues on the mechanisms involved, we investigated the effect of progesterone on gene expression in mice fallopian tubes in vitro at early (20 min) and later (2 h, 8 h) time-points using microarray and/or quantitative PCR. In parallel, oocyte cumulus complex transport was investigated in ovulating mice injected with one of the PGR antagonists, Org 31710 or CDB2194. Microarray analyses did not reveal any apparently regulated genes 20 min after progesterone treatment, in agreement with a proposed non-genomic action of progesterone controlling ciliary beating. After 2 h, 11 genes were significantly up-regulated. Analyses by quantitative PCR at 2 h and 8 h showed a consistent up-regulation of endothelin 1 (Edn1) and a down-regulation of its receptor Ednra by progesterone. We also show that treatment with progesterone receptor antagonist before ovulation accelerates the transport of the oocyte cumulus complex. This is the first study showing that progesterone regulates Edn1 and Ednra in the fallopian tube. Together with previous studies on endothelin-mediated effects on muscular contractions in the fallopian tube, the results from this study suggest that endothelin is a mediator of the progesterone-controlled effects on muscular contraction, and eventually gamete transport, in the fallopian tube.
Progesterone-mediated effects on gene expression and oocyte-cumulus complex transport in the mouse fallopian tube.
Sex, Specimen part, Treatment, Time
View SamplesSkeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic myotubes in keeping with a retained genetic/epigenetic defect of insulin action.
p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients.
Specimen part
View SamplesAnalysis of the effect on global gene regulation in epididymal adipose tissue of overexpressing the cytoskeletal tropomyosin, Tm5NM1 to help understand the transcriptional events that lead to increased fat mass in transgenic mice.
Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.
Specimen part
View SamplesPurpose: study the role of MALT1 auto-proteolysis in T cell receptor mediated activation of NF-kB. Methods: Jurkat cells were generated that express wild type MALT1, the auto-cleavage deficient MALT1-R149A mutant, the catalytic inactive MALT1-C464A mutant or the R149A-C464A double mutant (RACA). Expression of endogenous MALT1 was inactivated using TALEN technology for the Jurkat cells expressing MALT1-R149A (JDM-RA) and MALT1-C464A (JDM-CA). Illumina HISeq 2000 deep sequencing was performed to determine the mRNA profiles for MALT1, JDM-RA, JDM-CA and RACA cells in unstimulated conditions or after treatment with 75ng/ml PMA and 150 ng/ml ionomycin for 3 or 18 hrs. Results: PMA ionomycin stimulation of the MALT1 auto-cleavage defective JDM-RA cells fails to activate NF-kB-dependent transcription like for the MALT1 catalytic inactive JDM-CA cells and the double RACA mutant cells. Conclusion: MALT1 autoproteolysis is essential for transcription of NF-kB target genes Overall design: mRNA profiles of Jurkat expressing MALT1, MALT1-R149A, MALT1-C464A and MALT1-R149A-C464A after 0, 3 and 18 hours of stimulation with PMA and Ionomycin were generated by deep sequencing, in duplicate, using Illumina HISeq 2000
MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes.
No sample metadata fields
View SamplesThe role of antibody and B cells in preventing infection is established. In contrast, the role of B cell responses in containing chronic infections remains poorly understood. IgG2a (IgG1 in humans) can prevent acute infections and T-bet promotes IgG2a isotype switching. However, whether IgG2a and B cell-expressed T-bet influence the host-pathogen balance during persisting infections is unclear. Here we demonstrate that B cell specific loss of T-bet prevents control of persisting viral infection. T-bet in B cells not only controlled IgG2a production, but also mucosal localization, proliferation, glycosylation, and a broad transcriptional program. T-bet controlled a broad antiviral program in addition to IgG2a since T-bet in B cells was important even in the presence of virus-specific IgG2a. Our data supports a model in which T-bet is a universal controller of antiviral immunity across multiple immune lineages.
Cutting Edge: B Cell-Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection.
Specimen part
View SamplesCellular responses to carcinogens are typically studied in transformed cell lines, which do not reflect the physiological status of normal tissues. To address this question, we have characterized the transcriptional program and cellular responses of normal human lung WI-38 fibroblasts upon exposure to the ultimate carcinogen benzo[a]pyrene diol epoxide (BPDE). Exposure to BPDE induces a strong inflammatory response in WI-38 primary fibroblasts. Whole-genome microarray analysis shows induction of several genes related to the production of inflammatory factors, including those that encode interleukins (ILs), growth factors, and enzymes related to prostaglandin synthesis and signaling. This is the first demonstration that a strong inflammatory response is triggered in primary fibroblasts in response to a reactive diol epoxide derived from a polycyclic aromatic hydrocarbon.
Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway.
Specimen part
View SamplesMating triggers physiological and behavioral changes in females.
Mating induces an immune response and developmental switch in the Drosophila oviduct.
No sample metadata fields
View Samples