Inflorescence stages 1 to 12 from mutants involved in Arabidopsis small RNA metabolism. Three biological replicates of each mutant comprising at least 9 independent plants were harvested, and the expression profiles were determined using Affymetrix ATH1 arrays. Comparisons among the sample groups allow the identification of genes regulated by small RNAs (microRNAs and siRNAs).
microRNA-directed phasing during trans-acting siRNA biogenesis in plants.
No sample metadata fields
View SamplesAcute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. In order to elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness in AQM, gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.
Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model.
Sex, Specimen part, Disease, Disease stage
View SamplesThe overall goal and objective is to study the degree to which PAX3-FKHR accounts for differences between ARMS and ERMS by expressing a construct (termed P3FK/ER) consisting of PAX3-FKHR joined to the estrogen receptor ligand binding domain in an ERMS cell culture system.
Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target.
Cell line
View SamplesEngineered brain organoids (enCORs) exhibit reproducible neural differentiation and forebrain regionalization. Overall design: Comparison of transcriptomes from bioengineered micropatterned enCORs and spheroids at 20 days and 60 days
Guided self-organization and cortical plate formation in human brain organoids.
Specimen part, Subject, Time
View SamplesEstrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring potential underlying molecular mechanisms in human MCF7 breast cancer cells. Principal Findings: Gene expression profiling revealed that the expression of approximately 150 genes was influenced by both 17-estradiol (E2) and a hypomethylating agent 5-aza-2-deoxycytidine (DAC). Based on gene ontology (GO), CpG island prediction analysis and previously reported estrogen receptor (ER) binding regions, we selected six genes for further analysis (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2). GO analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis, while CpG island prediction of promoter regions reveals that the promoters of these genes contain at least one CpG island. Using chromatin immunoprecipitation, we show that ER is recruited to CpG islands in promoters, but neither in an E2- nor in a DAC-dependent fashion. DAC treatment reactivates the expression of all selected genes although only the promoters of BTG3 and FHL2 genes are methylated, with E2 treatment showing no effect on the methylation status of these promoters. Conclusions: We identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.
Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells.
Cell line
View Samples10 male subjects performed ~45 min one-legged cycling and 4 x 7 maximal concentric-eccentric knee extensions for each leg 15 min later. Thus, one limb performed aerobic and resistance exercise (AE+RE), while the opposing leg did resistance exercise only (RE). Biopsies were obtained from m. vastus lateralis of each leg 3 h after the resistance exercise bout.
Aerobic exercise augments muscle transcriptome profile of resistance exercise.
Sex, Specimen part, Treatment, Subject
View SamplesMitotic entry is accompanyed by the expression of a cluster of so called mitotic genes, whose activation is critical for mitosis in human and yeast cells. We found a link between the transcription machinery and cell cycle control network at mitosis in fission yeast, involving the Cdk8 kinase dependent phosphorylation of the fork head transcription factor Fkh2. We have generated a non-phosphorylatable fkh2 mutant (fkh2-S2A) also.
Cyclin-dependent kinase 8 regulates mitotic commitment in fission yeast.
No sample metadata fields
View SamplesTreating unselected cancer patients with new drugs dilutes proof of efficacy when only a fraction of patients respond to therapy. We conducted a meta-analysis on eight primary breast cancer microarray datasets representing diverse breast cancer phenotypes. We present a high-throughput protocol which incorporates drug sensitivity signatures to guide preclinical testing for effective therapeutic agents. Specifically, we focus on drug classes currently undergoing early phase clinical testing. Our genomic and experimental results suggest that the majority of basal-like breast cancers should respond to inhibitors of the phosphatidylinositol-3-kinase pathway, and that a relatively low toxicity histone deacetylase inhibitor, valproic acid, may target aggressive breast cancers. For a subset of drugs, prediction of sensitivity associates with tumor recurrence, suggesting clinical relevance. Preclinical studies using both cell lines and patient tumors grown in 3-dimensional in vitro and orthotopic in vivo preclinical models provide an efficient and highly relevant assessment of drug sensitivity in tumor phenotypes, and validate our genomic analyses. Together, our results show that high-throughput transcriptional profiling can significantly impact drug selection for breast cancer patients. Pre-identification of patient response may not only improve therapeutic response rates, it can also assist in quickly identifying the optimal inclusion criteria for clinical trials. Our model facilitates personalized drug therapy for cancer patients and may be generalized for study of drug efficacy in other diseases.
A pharmacogenomic method for individualized prediction of drug sensitivity.
Specimen part
View SamplesSmoking is the leading cause of lung cancer death, although only a small percentage of smokers develop the disease. Cigarette smoke exposure is known to cause a field of injury in cells throughout the respiratory tract, and while these airway epithelial cells are morphologically normal, they can undergo genetic alterations in response to cigarette smoke exposure.
Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium.
No sample metadata fields
View SamplesWe examined the effect pg IGF1 actibation on cellular contractility and migration in SSC osteoblast cells. Based on microarray levels of IGF1 expression, we selected fifteen cases and nine controls spanning from the highest IGF1 expression to the lowest in cases and controls. Subsequently, the pattern of IGF1 expressions in these cells was assessed using high throughput RNA sequencing. Overall design: RNA-seq based gene expression profiling of fifteen SSC osteoblasts and nine control osteoblasts.
Activation of the IGF1 pathway mediates changes in cellular contractility and motility in single-suture craniosynostosis.
No sample metadata fields
View Samples