Caenorhabditis elegans is a major eukaryotic experimental system employed to unravel a broad range of cellular and biological processes. Despite the many advantages of C. elegans, biochemical approaches to study tissue-specific gene expression in postembryonic stages are challenging. Here we report a novel experimental approach that enables the efficient determination of tissue-enriched transcriptomes by rapidly releasing nuclei from major tissues of postembryonic animals followed by fluorescence-activated nuclei sorting (FANS). Furthermore, we developed and applied a deep sequencing method, named 3'end-seq, which is designed to examine gene expression and identify 3' ends of transcripts using a small quantity of input RNA. In agreement with intestinal specific gene expression, promoter elements of highly expressed genes are enriched for GATA elements and their functional properties are associated with processes that are characteristic for the intestine. In addition, we systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including >3,000 sites that have previously not been identified. The analysis of nuclear mRNA revealed widespread alternative polyA site use in intestinally expressed genes. We describe several novel approaches that will be of significance to the analysis of tissue specific gene expression using small quantity RNA samples from C. elegans and beyond. Overall design: 3'end-seq of transcriptomes for input and sorted nuclei
Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq.
Specimen part, Cell line, Subject
View SamplesHuman intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome-wide gene expression in the small intestine, in order to obtain detailed information about intestinal transcriptomics in vivo.
Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.
Sex, Disease, Disease stage, Subject
View SamplesCrystal cells are one of the 3 Drosophila blood cell lineages and represent less than 5% of the total hemocytes in wild type larvae. There development is notably controlled by mlf (myeloid leukemia factor), which regulate their number by stabilising the lineage-specific transcription factor Lozenge. To gain insight into the biology of this blood cell lineage and its regulation by mlf, we established the gene expression profile of the circulating crystal cells in wildtype and mlf mutant third instar larvae. This study provides a rich source of information to further characterise crystal cell function and regulation. In addition our data show that mlf is a major regulator of crystal cell gene expression programm and that mlf mutation leads to the accumulation of misdifferentiated crystal cells. Overall design: RNA expression profiles of sorted lz-GAL4,UAS-GFP+ circulating blood cells from wild type and mlf-/- third instar Drosophila larvae were generated by deep sequencing, in triplicate, using Illumina HiSeq2500 sequencing platform.
Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis.
Specimen part, Subject
View SamplesWe report the differential gene expression differences between control and Ovol2-deficent newborn keratinocytes Overall design: Two control and two Ovol2-deficent samples were isolated
An Ovol2-Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation.
Specimen part, Subject
View SamplesConsumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge on its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and -oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor (PPARG) was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet.
Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs.
Sex, Age, Specimen part
View SamplesBromodomain and extra terminal domain (BET) inhibition reduces occupancy of BET-family proteins at promoter and enhancer sites resulting in changes in the transcription of specific genes.
Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents.
Specimen part, Cell line
View SamplesWe used transgenic mouse embryos that are deficient in the two enzymatically active RNA editing enzymes ADAR1 and ADAR2 to compare relative frequencies but also sequence composition of mature miRNAs in these genetically modified backgrounds to wild-type mice by Illumina next gen sequencing. Deficiency of ADAR2 leads to a reproducible change in abundance of specific miRNAs and their predicted targets. Changes in miRNA abundance seem unrelated to editing events. Additional deletion of ADAR1 has surprisingly little impact on the mature miRNA repertoire, indicating that miRNA expression is primarily dependent on ADAR2. A to G transitions reflecting A to I editing events can be detected at few sites and at low frequency during the early embryonic stage investigated. Again, most editing events are ADAR2 dependent with only few editing sites being specifically edited by ADAR1. Besides known editing events in miRNAs a few novel, previously unknown editing events were identified. Some editing events are located to the seed region of miRNAs opening the possibility that editing leads to their retargeting. Overall design: GSM852140-8: sequencing of mature miRNAs of wt, ADAR2-/- and ADAR1-/-/ADAR2-/- female mouse embryos at E11.5 GSM863778-81: Gene expression was measured in wiltype, ADAR2-/- and ADAR1-/-/ADAR2-/- E11.5 whole female mouse embryos using Agilent Whole Mouse Genome Oligo Microarrays 8x60K.
Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.
Sex, Specimen part
View SamplesLamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2alpha. Here we show lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation analyses of eu- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, the depletion of which shifts binding of lamin A/C towards more heterochromatic regions. These alterations in lamin A/C chromatin interaction affect epigenetic histone marks in euchromatin without significantly affecting gene expression, while loss of lamin A/C in heterochromatic regions increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. Overall design: Examination of LaminA, LaminB and Lap2a DNA binding in Lap2alpha +/+ and Lap2a -/- cells and according changes in Histone modifications and gene expression
A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.
No sample metadata fields
View SamplesBackground: Adenosine deaminases that act on RNA (ADARs) bind to double-stranded and structured RNAs and deaminate adenosines to inosines. This A to I editing is widespread and required for normal life and development. Besides mRNAs and repetitive elements, ADARs can target miRNA precursors. Editing of miRNA precursors can affect processing efficiency and alter target specificity. Interestingly, ADARs can also influence miRNA abundance independent of RNA-editing. In mouse embryos where editing levels are low, ADAR2 was found to be the major ADAR protein that affects miRNA abundance. Here we extend our analysis to adult mouse brains where high editing levels are observed.
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.
Sex, Specimen part
View Samples