We analyzed Purkinje cell transcriptome dynamics in the developing mouse cerebellum during the first three postnatal weeks, a key developmental period equivalent to the third trimester in human cerebellar development. Our study represents the first detailed analysis of developmental Purkinje cell transcriptomes and provides a valuable dataset for gene network analyses and biological questions on genes implicated in cerebellar and Purkinje cell development. Overall design: Laser capture microdissection was employed to obtain a highly enriched population of cerebellar Purkinje cells. Deep sequencing was performed on RNA isolated from 1000 Purkinje cells at five developmental timepoints (postnatal days P0, P4, P8, P14 and P21) in triplicate.
A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status.
Specimen part, Cell line, Subject
View SamplesLangerhans cells (LC) represent one of the first lines of contact between the immune system and sexually transmitted pathogens, and in the human epidermis LCs have been thought to represent the only mononuclear phagocyte (MNP) population. Here we show an additional epidermal MNP subset that can be distinguished from LCs phenotypically as CD11chi, CD1c+ MR+ (epidermal CD11c+ DCs). These cells are transcriptionally similar to dermal cDC2 but express higher levels of costimulatory markers and are more efficient at T cell stimulation. Importantly, compared to LC, epidermal CD11c+ DCs are i) enriched in the epithelium of anogenital tissues where they preferentially interact with HIV, ii) express the higher levels of the HIV entry receptor CCR5, iii) support the higher levels of HIV uptake and replication and iv) are more efficient at transferring virus to CD4 T cells. Importantly these findings were observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a cell population that can be discerned from LCs by their lower surface expression of CD45, HLA-DR and CD33 (epidermal CD33low cells). These are transcriptionally similar to LCs but do not appear to function as APCs as do not secrete cytokines, express negligible amounts of costimulatory molecules and are very weak inducers of T cell proliferation. They also do not act as HIV target cells. Our findings reveal a new subset of epidermal DCs in skin and anogenital tissues with a potential key role in sexual transmission of HIV. Overall design: Sorted cell populations from four donors were captured directly into lysis buffer and polyA RNA transcripts were reverse transcribed, amplified and sequenced using the Smart-seq 2 protocol described by Picelli et al (Nature Methods. 2013;10(11):1096-8). Each sample was sequenced across 4 HiSeq lanes and the data for each lane is represented as an independent sample (GSM).
Identification of HIV transmitting CD11c<sup>+</sup> human epidermal dendritic cells.
No sample metadata fields
View SamplesGene splicing requires three basal genetic elements; the 3’ and 5’ splice sites and the branchpoint to which the 5’ intron termini is ligated to form a closed lariat during the splicing reaction. The 5’ and 3’ splice sites that define exon boundaries have been widely identified, revealing pervasive transcription and splicing of human genes. However, the locations of the third requisite element, the branchpoint, are still largely unknown. Here we employ two complementary approaches, targeted RNA sequencing and exoribonuclease digestion, to distil sequenced reads that traverse the lariat junction and, via non-conventional alignment, locate human branchpoint nucleotides. Alignments identify 88,748 branchpoints that correspond to 20% of known introns, with 76% supported by diagnostic sequence mismatch errors. This affords a first genome-wide analysis of branchpoints, describing their distribution, selection, and the existence of a diverse array of overlapping sequence motifs with distinct usage, evolutionary histories, and co-variation with distal splicing elements. The overlap of branchpoints with noncoding human genetic variation also indicates a notable contribution to disease. This annotation and analysis incorporates branchpoints into transcriptomic research and reflects a core role for this element in the regulatory code that governs gene splicing and expression. Overall design: RNaseR validation of branchpoint nucleotides
Genome-wide discovery of human splicing branchpoints.
No sample metadata fields
View SamplesGene splicing requires three basal genetic elements; the 3’ and 5’ splice sites and the branchpoint to which the 5’ intron termini is ligated to form a closed lariat during the splicing reaction. The 5’ and 3’ splice sites that define exon boundaries have been widely identified, revealing pervasive transcription and splicing of human genes. However, the locations of the third requisite element, the branchpoint, are still largely unknown. Here we employ two complementary approaches, targeted RNA sequencing and exoribonuclease digestion, to distil sequenced reads that traverse the lariat junction and, via non-conventional alignment, locate human branchpoint nucleotides. Alignments identify 88,748 branchpoints that correspond to 20% of known introns, with 76% supported by diagnostic sequence mismatch errors. This affords a first genome-wide analysis of branchpoints, describing their distribution, selection, and the existence of a diverse array of overlapping sequence motifs with distinct usage, evolutionary histories, and co-variation with distal splicing elements. The overlap of branchpoints with noncoding human genetic variation also indicates a notable contribution to disease. This annotation and analysis incorporates branchpoints into transcriptomic research and reflects a core role for this element in the regulatory code that governs gene splicing and expression. Overall design: CaptureSeq identification of branchpoint nucleotides
Genome-wide discovery of human splicing branchpoints.
Cell line, Subject
View SamplesOlfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. To characterize transporter gene expression in NKCC1-/- mice, we examined the OE gene profile (Supplementary Table 1) using Illumina RNA-Seq to generate OE transcriptomes from NKCC1-/- and wild type mice. We analyzed RNA from OEs of male and female NKCC1+/+ (12 ± 1 weeks) and NKCC1-/- mice (16.5 ± 3.5 weeks, NMRI background); each RNA sample was prepared from an OE pool of 4 (mixed-gender pool RNA isolation) or 2 (gender RNA pool) different mice for each condition. Our data demonstrated the absence of a highly expressed ion transporter that could compensate for NKCC1. Overall design: The Illumina RNA-Seq protocol was utilized. In total, we amplified and sequenced up to 38 million 101 nt-long fragments from murine NKCC1+/+ and NKCC1-/- adult OEs.
Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons.
No sample metadata fields
View SamplesThe shoot apical meristem (SAM) contains undifferentiated stem cells that are responsible for the initiation of above-ground organs, and eventually the general architecture of the plant. To gain insight into the nature of genetic programs and the regulatory networks underlying SAM function in soybean, we have used Affymetrix soybean GeneChip to investigate the transcript profiles associated with micro-dissected SAMs or axillary meristems (AMs). While the microarray data disclosed the conservation of transcriptional signature between the two types of meristems, subsequent comparison of SAM transcript profile with that of non-meristem (NM) tissue revealed a total of 1090 and 1523 transcripts that are significantly up- or down-regulated in the SAM. Further in situ hybridization analysis on selected transcripts has implicated their roles in SAM maintenance and the establishment of organ polarity. We also identified a gene that could potentially serve as a novel marker that distinguishes the differentiating cells in the meristem from the pluripotent stem cells. Along with many unknowns, transcripts with putative annotation have also been identified that has allowed us to infer SAM regulatory roles for various families of transcription factors as well as products associated with auxin-mediated responses, cell division and proliferation, epigenetic regulation, miRNA regulation and protein turnover. Computational analysis on the promoter regions of Arabidopsis orthologs of genes with high expression in the soybean SAM revealed a conserved over-representation of three cis-acting regulatory motifs. Our microarray data thus represents a rich source of target genes for further study into the meristem function and maintenance.
Genome-wide analysis of gene expression in soybean shoot apical meristem.
No sample metadata fields
View SamplesBackground: Pollen, the male partner in the reproduction of flowering plants, comprises either two or three cells at maturity. The current knowledge of the pollen transcriptome is limited to the model plant Arabidopsis thaliana, which has tri-cellular pollen grains at maturity.
Genomic expression profiling of mature soybean (Glycine max) pollen.
No sample metadata fields
View SamplesWe used transgenic mouse embryos that are deficient in the two enzymatically active RNA editing enzymes ADAR1 and ADAR2 to compare relative frequencies but also sequence composition of mature miRNAs in these genetically modified backgrounds to wild-type mice by Illumina next gen sequencing. Deficiency of ADAR2 leads to a reproducible change in abundance of specific miRNAs and their predicted targets. Changes in miRNA abundance seem unrelated to editing events. Additional deletion of ADAR1 has surprisingly little impact on the mature miRNA repertoire, indicating that miRNA expression is primarily dependent on ADAR2. A to G transitions reflecting A to I editing events can be detected at few sites and at low frequency during the early embryonic stage investigated. Again, most editing events are ADAR2 dependent with only few editing sites being specifically edited by ADAR1. Besides known editing events in miRNAs a few novel, previously unknown editing events were identified. Some editing events are located to the seed region of miRNAs opening the possibility that editing leads to their retargeting. Overall design: GSM852140-8: sequencing of mature miRNAs of wt, ADAR2-/- and ADAR1-/-/ADAR2-/- female mouse embryos at E11.5 GSM863778-81: Gene expression was measured in wiltype, ADAR2-/- and ADAR1-/-/ADAR2-/- E11.5 whole female mouse embryos using Agilent Whole Mouse Genome Oligo Microarrays 8x60K.
Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.
Sex, Specimen part
View SamplesLamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2alpha. Here we show lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation analyses of eu- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, the depletion of which shifts binding of lamin A/C towards more heterochromatic regions. These alterations in lamin A/C chromatin interaction affect epigenetic histone marks in euchromatin without significantly affecting gene expression, while loss of lamin A/C in heterochromatic regions increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. Overall design: Examination of LaminA, LaminB and Lap2a DNA binding in Lap2alpha +/+ and Lap2a -/- cells and according changes in Histone modifications and gene expression
A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.
No sample metadata fields
View Samples