We examined the gene expression profiles in ex vivo human CD4+ and CD8+ T cells from untreated HIV-infected individuals at different clinical stages and rates of disease progression. Profiles of pure CD4+ and CD8+ T cells subsets from HIV-infected nonprogressors who controlled viremia were indistinguishable from HIV-uninfected individuals. Similarly, no gene clusters could distinguish T cells from individuals with early from chronic progressive HIV infection, whereas differences were observed between uninfected or nonprogressors versus early or chronic progressors. In early/chronic HIV infection, three characteristic gene expression signatures were observed: (1) CD4+ and CD8+ T cells showed increased expression of interferon stimulated genes (ISGs). However, some ISGs including CXCL9, CXCL10, and CXCL11, and the IL15R in both CD4+ and CD8+ T cells and the anti-HIV ISG APOBEC3G in CD4+ T cells, were not upregulated. (2) CD4+ and CD8+ T cells showed a cluster similar to that observed in thymocytes, and (3) more genes were differentially regulated in CD8+ T cells than in CD4+ T cells, including a cluster of genes downregulated exclusively in CD8+ T cells. In conclusion, HIV infection induces a persistent T cell transcriptional profile, early in infection, characterized by a dramatic but potentially aberrant interferon response, and a profile suggesting an active thymic output.
Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells.
No sample metadata fields
View SamplesPostnatal handling in rodents leads to decreased anxiety-like behavior in adulthood. We used microarrays to look at gene expression differences in the CA1 region of the hippocampus in female mice subjected to postnatal handling compared to controls.
Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.
No sample metadata fields
View SamplesMolecular profiling of infiltrating monocyte-derived macrophages versus resident kupffer cells following acute liver injury
Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury.
Specimen part, Disease, Time
View SamplesGenetically identical inbred mice exhibit substantial stable individual variability in exploratory behavior. We used microarrays to look at gene expression differences in the hippocampus in female mice separated by stable differences in exploratory behavior
Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.
No sample metadata fields
View SamplesMessenger RNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential it is considered extremely rare in mammals. Here to explore the extent of mRNA retention in metabolic tissues we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single molecule transcript imaging in mouse beta cells, liver and gut. We identify a wide range of protein coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. Overall design: we have total of 8 samples all are mice. liver nuclear RNA (2 replicates), liver cytoplasmic RNA (2 replicates), MIN6 (cell line) nuclear RNA (2 replicates), MIN6 (cell line) cytoplasmic RNA (2 replicates)
Nuclear Retention of mRNA in Mammalian Tissues.
Specimen part, Cell line, Subject
View SamplesOn the basis of the cell-surface molecule expression, CD16+ monocytes are likely comprised of distinct subpopulations of monocytes rather than a continuum of CD14+ monocytes with differing levels of cell activation. To better study this, we used gene array analysis that compared overall gene expression profiles of CD16+ subpopulations (CD14+CD16+ and CD16+) with that of CD14+CD16-. Gene expression in three FACS-sorted monocyte subsets was assessed by Affymetrix rhesus macaque oligonucleotide gene arrays that contain 52,024 probe sets covering 47,000 monkey genes. There were 29,361 probe sets that expressed in at least one subpopulation (raw array signal intensity > 32). Raw data were processed using robust multi-array average. To identify the most strongly, differentially expressed genes in each subpopulation, we only selected transcripts with consistently greater than four-fold difference (P < .05). In comparison to CD14+CD16- monocyte subset, a large number of genes (9098/29361, 30.9%) were differentially expressed in both CD14+CD16+ and CD16+ subsets: 1999 genes down-regulated; and 7099 genes up-regulated. Altogether, we observed large-scale gene expression differences between the CD14+CD16- subset and the two CD16+ subsets (CD14+CD16+ and CD16+), demonstrating transcriptional heterogeneity. The differential gene expression between CD16- and CD16+ monocytes underscore the fundamental differences between these cells.
Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage.
Specimen part
View SamplesLyme disease is challenging to diagnose, as clinical manifestations are variable and current tools to detect nucleic acid or antibody responses from Borrelia burgdorferi infection have low sensitivity. Here we conducted the first study of the global transcriptome of patients with Lyme disease to identify potential diagnostic biomarkers. Twenty-nine patients were enrolled and compared to 13 healthy controls at three time points after infection. Fifteen publicly available transcriptome datasets from patients in vivo or infection models in vitro were used to assess specificity of differentially expressed genes (DEGs). We found that Lyme disease results in profound and sustained changes in the patient transcriptomes, with a specific signature that shares =44% DEGs with other infections. Overall design: Gene expression profile from peripheral mononuclear blood cells (PBMC) of Lyme disease patients against healthy controls was undertaken. A total of 29 Lyme disease patients were sampled at 3 time points: acute Lyme pre-treatment (V1), 3 weeks later, immediately following completion of a standard course of antibiotics (V2), and 6 months following treatment completion (V5). 13 healthy controls were also sampled at one time point. Total RNA was extracted from 10e7 PBMC, followed by mRNA purification, paired-end barcode library preparation and sequencing on an Illumina Hiseq 2000.
Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease.
No sample metadata fields
View SamplesLy6Chi monocytes massively infiltrate the CRC-tumors by virtue of their CCR2 expression and further mature into Ly6CloF4/80hi CD64hiMHCII+ TAM upon tumor progression. We demonstrated that TAM-deficient tumors display impaired tumor-growth via alternation of the ECM morphology, structure and composition. Using advanced high-resolution optical imaging to visualize the tumoral-ECM macromolecule network together with transcriptomic and proteomic approaches we unraveled that TAM play critical role in the deposition, linearization and cross-linking of collagenous ECM. Remarkably, we show that cues embedded in ECM by TAM-mediated remodeling activity promote tumor cell proliferation in vitro and orthotopic tumor development in vivo.
Tumor macrophages are pivotal constructors of tumor collagenous matrix.
Sex, Specimen part
View SamplesThe role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs. Overall design: Examination of WT and MTCH2 KO ESC and EpiLC mouse embryonic stem cells transcriptome
MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.
Specimen part, Subject
View SamplesWe showed different function of monocyte derived cells in the lamina propria of the colon under steady state and inflammatory conditions.
Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells.
Sex, Specimen part
View Samples