Effect of the ablation of connexin 30 in the stria vascularis
Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis.
Age, Specimen part, Disease, Time
View SamplesWe recently reported that single-cell derived isogenic subclones of SKMEL5 cells have differential initial sensitivity to BRAF-inhibitors. In order to probe differences among these subclones, we selected three subclones with unique drug responses: progressing (SK-MEL-5 SC10), stationary (SK-MEL-5 SC07), and regressing (SK-MEL-5 SC01) and performed RNASeq. This study examines differentially expressed genes (DEGs) among the subclones to identify the molecular basis for initial differences in drug sensitivity. Overall design: Transcriptomics analysis between single-cell derived isogenic subclones of BRAF-mutated melanoma cell line, SK-MEL-5
A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma.
Specimen part, Cell line, Subject
View SamplesPromoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of tumour suppressor inactivation in cancer, including malignant brain tumours.
Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma.
Specimen part, Treatment
View SamplesA deficiency of pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of deafness. Pejvakin-deficient (Pjvk-/-) mice also exhibited variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggested a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation showed that the cochlear sensory hair cells and auditory pathway neurons of Pjvk-/- mice and patients were exceptionally vulnerable to sound. Pjvk-/- cochleas displayed features of marked oxidative stress and impaired anti-oxidant defenses. We showed that pejvakin is associated with peroxisomes, and is required for the oxidative stress-induced proliferation of these organelles. In Pjvk-/- hair cells, peroxisomes displayed structural abnormalities after the onset of hearing. Noise-exposure of wild-type mice rapidly upregulated Pjvk cochlear transcription, and triggered peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the anti-oxidant activity of peroxisomes protects the auditory system against noise-induced damage.
Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes.
Specimen part
View SamplesComparison of gene expression profile of Ewing sarcoma cells which have an exchange of the endogenous EWS/FLI1 to either wild-type or a turnover-deficient mutant EWS/FLI1. Most target genes are saturated as only a few target genes are soly driven by increasing protein amount.
Proteasomal Degradation of the EWS-FLI1 Fusion Protein Is Regulated by a Single Lysine Residue.
No sample metadata fields
View SamplesRNA-seq analysis from young and pre-glaucomatous DBA/2J retinal ganglion cells and control (age and sex-matched, D2-Gpnmb+) retinal ganglion cells Overall design: Retinal ganglion cell mRNA from 4 month (young) and 9 month (pre-glaucomatous) DBA/2J mice and age and sex-matched D2-Gpnmb+ controls
Nicotinamide and WLD<sup>S</sup> Act Together to Prevent Neurodegeneration in Glaucoma.
Cell line, Treatment, Subject
View SamplesPorcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of 3rd trimester pregnant pigs can result in transmission of the virus to the fetus and ultimately death in utero or postnatally. Little is known about the immune response to infection at the maternal-fetal interface and in the fetus itself, or the molecular events behind virus transmission and disease progression in the fetus. To investigate these processes, RNA-sequencing of two tissues, uterine endothelium adjacent to the umbilical attachment site and fetal thymus, was performed 21 days post challenge on four groups of fetuses selected from a large PRRSV challenge experiment of pregnant gilts. Overall design: RNA-seq experiment compared gene expression between four different groups of fetuses (n=12 per group): control (CON-uninfected fetuses from mock inoculated gilts), UNINF (uninfected fetuses from PRRSV-inoculated gilts), INF (infected fetuses from PRRSV-inoculated gilts), and meconium-stained fetuses (MEC-meconium-stained fetuses from PRRSV-inoculated gilts) and investigated two tissues: uterine endometrium (with adherent placental tissue) at the site of umbilical attachment and fetal thymus (96 samples in total). Three contrasts were performed for the differential expression (edgeR) and network (WGCNA) analyses: UNINF v CON, INF v UNINF, and MEC v INF.
Genome-wide analysis of the transcriptional response to porcine reproductive and respiratory syndrome virus infection at the maternal/fetal interface and in the fetus.
Specimen part, Subject
View SamplesThe RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One such activity is the human Nuclear EXosome Targeting (NEXT) complex, composed of hMTR4, the Zn-finger protein ZCCHC8 and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, demanding a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the PolyA tail eXosome Targeting (PAXT) connection, comprising the hitherto uncharacterized ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear polyA binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts, that are generally both longer and more 3'polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors. Overall design: RNA from HeLa cells was analysed by next generation sequencing upon depletion of EGFP(control), RRP40, RBM7, ZCCHC8, PABPN1 and ZFC3H1. Both total and BrU RNA (one hour labeling) were collected for each condition in triplicates. The spike-in sequences used in the samples can be provided upon request.
Characterizing ZC3H18, a Multi-domain Protein at the Interface of RNA Production and Destruction Decisions.
Specimen part, Subject
View SamplesThe aim of this study was to investigate the molecular mechanisms implicated in this mouse model of nemaline myopathy, and to further compare the molecular disease response in different skeletal muscles. For this purpose, snap frozen skeletla muscle specimens from wild type and transgenic for alpha tropomyosin slow mice were studied. Five different muscle types were used (diaphragm, plantaris, extensor digitorum longus, tibialis anterior, gastrocnemus). Mice were sacrificed between 7 and 10 months. RNA pools from 3-5 animals were created and each pool was hybridized to a U74Av2 Affymetrix GeneChip. Datasets from 36 GeneChips were included in this study.
Skeletal muscle repair in a mouse model of nemaline myopathy.
No sample metadata fields
View SamplesDifferent human mTEC subsets (MUC1, CEACAM5 and SGLT1) were purified by sequential enzymatic digestion (collagenase/dispase, trypsin) followed by enrichment using magnetic beads (CD45 beads, Miltenyi Biotech) and FACS sorting. Cells of the surface phenotype CD45-, CDR2-, EpCAM+ were further subdivided into MUC1+/MUC1-, CEACAM5+/CEACAM5- and SGLT1+/SGLT1- fractions. RNA was isolated using MACS SuperAmp protocol (Miltenyi Biotec) and hybridized to Illumina Whole-Genome Expression Beadchips. Gene expression of Antigen-positive and Antigen-negative mTEC subsets was compared.
Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity.
Specimen part
View Samples