Microarrays were used to determine relative global gene expression changes upon introduction of EMT-inducing or control vectors.
Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HoxA3 is an apical regulator of haemogenic endothelium.
Specimen part
View SamplesWe used a murine ES cell line in which HoxA3 expression is under control of a tetracycline-responsive element and differentiated these cells as embryoid bodies (EBs). Endothelial (Flk-1 VE-cadherin double positive, FV) and hematopoieitc progenitors (c-Kit CD41 double positive, K41) were isolated from differentiated EBs that had been induced for 6 hours by doxycycline (Dox) treatment.
HoxA3 is an apical regulator of haemogenic endothelium.
Specimen part
View SamplesWe used an in vivo short hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo, and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase, Syk. In contrast, loss of Itgb3 in normal HSPCs did not affect engraftment, reconstitution, or differentiation. Finally, we confirmed that Itgb3 is dispensable for normal hematopoiesis and required for leukemogenesis using an Itgb3 knockout mouse model. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.
In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling.
Cell line, Treatment, Time
View SamplesControlled decay of cytokine and chemokine mRNAs restrains the time and amplitude of inflammatory responses. Tristetraprolin (TTP) binds to AU-rich elements in 3 untranslated regions of mRNA and targets the bound mRNA for degradation. We have addressed here the function of TTP in balancing the macrophage activation state by a comprehensive analysis of TTP-dependent mRNA decay in LPS-stimulated macrophages from WT and TTP-deficient mice.
Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation.
Specimen part
View SamplesMuscle contraction during exercise is the major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the benefical adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the human muscle secretome in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response and as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold-changes > 1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and anti-oxidant defense; notably without increased release of creatin kinase.
Cytokine response of primary human myotubes in an in vitro exercise model.
Sex, Specimen part, Subject
View SamplesThe key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose or cholesterol via stimuli specific phosphorylation by different MAPK cascades. We have formerly reported the systemic impact of phosphorylation in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK kinase phosphorylation sites deficient variant (alb-SREBP-1aP; (S63A, S117A, T426V)), respectively. Here we investigated the molecular basis of the systemic observation in holistic hepatic gene expression analyses and lipid degrading organelles involved in the pathogenesis of metabolic syndrome, i.e. peroxisomes, by 2D-DIGE and mass spectrometry analyses. Although alb-SREBP-1a mice develop a severe phenotype with visceral adipositas and hepatic lipid accumulation featuring a fatty liver, the hepatic differential gene expression and alterations in peroxisomal protein patterns compared to control mice were surprisingly relative low. In contrast, phosphorylation site deficient alb-SREBP-1aP mice, protected from hepatic lipid accumulation phenotype, showed gross alteration in hepatic gene expression and peroxisomal proteome. Further knowledge based analyzes revealed that overexpression of SREBP-1a favored mainly acceleration in lipid metabolism and indicated a regular insulin signaling, whereas disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes including signs for loss of lipid metabolic targets. These results could be the link to a disturbed lipid metabolism that overall resembles a state of insulin resistance.
Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes.
Sex, Age, Specimen part
View SamplesIn order to identify genes with different overall transcript levels or differential exon levels (alternative processing) between the groups Control and Tat-SF1KD, we studied 11 hybridizations on the HumanExon10ST array using mixed model analysis of variance. 526 genes with significant transcript level differences between the groups and 1397 genes with significant differential exon levels were found, including 99 genes with both transcript and exon level differences (p<0.01).
Identification of Tat-SF1 cellular targets by exon array analysis reveals dual roles in transcription and splicing.
Cell line
View SamplesExpression data from Kc167 cells under normal conditions. Used to assess expression levels of genes with ORC bound at promoter.
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.
Cell line
View SamplesIn a fluorescence polarization screen for MYC-MAX interaction, we have identified a novel small molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-overexpressing human cancer cells. Overall design: 4 treatment groups analyzed in triplicate: no treatment(control), 20uM KJ-Pyr-9, 0.1ug/mL doxycycline and KJ-Pyr-9 in combination with doxycycline
Inhibitor of MYC identified in a Kröhnke pyridine library.
No sample metadata fields
View Samples