We used high density oligonucleotide arrays to identify molecular correlates of genetically and clinically distinct subgroups of B-cell chronic lymphocytic leukemia (B-CLL). Gene expression profiling was used to profile the five most frequent genomic aberrations, namely deletions affecting chromosome bands 13q14, 11q22-q23, 17p13 and 6q21, and gains of genomic material affecting chromosome band 12q13. A strikingly high degree of correlation between loss or gain of genomic material and the amount of transcripts from the affected regions leads to the hypothesis of gene dosage as a significant pathogenic factor. Furthermore, the influence of the immunoglobulin variable heavy chain (VH) mutation status was determined. A clear distinction in the expression profiles of unmutated and mutated VH samples exists, which can be discovered using unsupervised learning methods. However, when samples were separated by gender, this separation could only be detected in samples from male patients.
Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status.
No sample metadata fields
View SamplesInvasive extravillous trophoblasts (EVTs) of the human placenta are critically involved in successful pregnancy outcome since they remodel the uterine spiral arteries to increase blood flow and oxygen delivery to the placenta and the developing fetus. To gain more insights into their biological role different primary cell culture models are commonly utilised. However, access to early placental tissue may be limited and primary trophoblasts rapidly cease proliferation in vitro impairing genetic manipulation. Hence, trophoblastic cell lines have been widely used as surrogates to study EVT function. Although the cell lines share some molecular marker expression with their primary counterpart, it is unknown to what extent they recapture the invasive phenotype of EVT. Therefore, we here report the first thorough GeneChip analyses of SGHPL-5, HTR-8/SVneo, BeWo, JEG-3 and the novel ACH-3P trophoblast cells in comparison to previously analysed primary villous cytrophoblasts and extravillous trophoblasts.
Trophoblast invasion: assessment of cellular models using gene expression signatures.
Specimen part
View SamplesThe mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional p38alpha alleles, we investigated its function in postnatal development and tumorigenesis. When p38alpha is specifically deleted in the mouse embryo, fetuses develop to term but die shortly after birth, likely due to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha display increased proliferation, resulting from sustained activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Importantly, in chemical-induced liver cancer development, mice with liver-specific deletion of p38alpha show enhanced hepatocyte proliferation and tumor development that also correlates with JNK/c-Jun upregulation. Furthermore, increased proliferation of p38alpha-deficient hepatocytes and tumor cells is suppressed by inactivation of JNK or c-Jun. These results reveal a novel mechanism whereby p38alpha negatively regulates cell proliferation through antagonizing the JNK/c-Jun pathway in multiple cell types and in liver cancer development.
p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway.
No sample metadata fields
View SamplesSusceptibility genes for Autism Spectrum Disorder (ASD), Fragile X Syndrome (FXS), monogenetic disorders with intellectual disabilities (ID) or schizophrenia (SCZ) converge on processes related to neuronal function and differentiation. Furthermore, ASD risk genes are enriched for FMRP (Fragile X Mental Retardation Protein) targets and for genes implicated in ID. In addition, a significant co-heritability was observed between ASD and SCZ. The genetic overlap between ASD, FXS, ID and SCZ together with the symptomatic differences gives rise to the question if pathomechanisms impair the same or different regulatory patterns activated during neuronal differentiation (ND). To test this idea, we performed transcriptome analysis of in-vitro differentiation of the neuroblastoma cell line model SH-SY5Y and identified genes that were differentially expressed, dynamically regulated, and coordinately expressed. The identified genetic modules activated during ND are enriched for genetic risk factors for these four disorders. Although risk genes for the disorders significantly overlap, we observed disorder specific enrichments: ASD or FXS implicated genes were likely to be positive regulators of ND whereas ID implicated genes were related to negative regulation. ASD and SCZ genes were specifically enriched among cholesterol and fatty acid associated modules. ID genes were overrepresented among cell cycle modules. In addition, we show that ASD genes are likely to be hub genes. We hypothesize that knowledge about genetic variants of an individual combined with network and pathway context of the related genes will allow differentiating between psychiatric disorders.
Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.
Sex, Specimen part, Cell line
View SamplesThe non-coding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to special developmental contexts found in cells of the early embryo and specific hematopoietic precursors. The absence of critical silencing factors might explain why Xist cannot silence outside these contexts. Here, we show that Xist can also initiate silencing in a lymphoma model. Using the tumor context we identify the special AT rich binding protein SATB1 as an essential silencing factor. We show that loss of SATB1 in tumor cells abrogates the silencing function of Xist. In normal female lymphocytes Xist localizes along SATB1 filaments and, importantly, forced Xist expression can relocalize SATB1 into the Xist cluster. This reciprocal influence on localization suggests a molecular interaction between Xist and SATB1. SATB1 and its close homologue SATB2 are expressed during the initiation window for X inactivation in embryonic stem cells and are recruited to surround the Xist cluster. Furthermore, ectopic expression SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, SATB1 functions as a crucial initiation factor and may act to organize genes for silencing by Xist during the initiation of X inactivation.
SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells.
Specimen part
View SamplesInvasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma.
Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma.
No sample metadata fields
View SamplesSince the discovery of adult neural stem cells, their exact identity is still under discussion. Moreover, the lack of a reproducible procedure to purify neural stem cells prospectively rather than by growing them in vitro has so far precluded their study at the transcriptome level. Here we demonstrate a novel procedure to prospectively isolate neural stem cells from the adult mouse subependymal zone on the basis of their GFAP- and prominin1-expression by fluorescence-activated cell sorting. All self-renewing, multipotent stem cells are contained in this fraction at 70% purity. The stem cell identity of these double-positive cells is further demonstrated in vivo, by using a novel split-Cre-technology for fate mapping.
In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells.
Specimen part
View SamplesTransdifferentiation of fibroblasts into induced Neuronal cells (iNs) by neuronal-specific transcription factors Brn2, Myt1l and Ascl1 is a paradigmatic example of inter-lineage conversion across epigenetically distant cells. Despite tremendous progress on the transcriptional hierarchy underlying transdifferentiation, the enablers of the concomitant epigenome resetting remain to be elucidated. Here we investigated the role of KMT2A and KMT2B, two histone H3 lysine 4 methylases with cardinal roles in development, through individual and combined inactivation. We found that Kmt2b, whose human homologue's mutations cause dystonia, is selectively required for iN conversion through the suppression of the alternative myocyte program and the induction of neuronal maturation genes. Overall design: In order to study the role of KMT2A and KMT2B during transdifferentiation, we employed conditional mouse strains carrying: i) the exon 2 of Kmt2a and/or Kmt2b flanked by LoxP sites; ii) the knock-in of the YFP-coding gene into one Rosa26 allele, downstream of a LoxP-flanked transcription termination cassette (STOP cassette); and iii) the gene coding for the tamoxifen-inducible version of Cre recombinase knocked into the second Rosa26 allele (Glaser et al., 2006; Kranz et al., 2010; Testa et al., 2004). MEFs were derived from Kmt2a (and/or Kmt2b)fl/fl Cre+ YFP+ embryos and from Kmt2a+/+Kmt2b+/+ Cre+ YFP+ or Kmt2afl/+ Cre+ YFP+ for Kmt2a conditional KO (cKO) as controls (Figure 1A), and were subjected to transdifferentiation. After 13 days of BAM treatment, cells were FACS sorted for PSA-NCAM expression, and the transcriptome of positive and negative cells were independently profiled.
KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes.
Specimen part, Subject
View SamplesPurpose: Seek for differential gene expression in vemurafenib-resistant A375 tumors vs. untreated controls to provide a rationale for resistance mechanism Methods: mRNA profiles of vemurafenib-resistant A375 tumors and untreated control tumors were generated by transcriptome sequencing of A375 melanoma bearing mice. Since our xenograft samples contain a mixture of human and mouse RNAs we mapped RNASeq reads against a hybrid human/mouse genome. We than removed reads of potential mouse origin by taking only reads that map uniquely to human chromosomes. On average 23% of reads were removed as potential mouse reads. We than took the remaining reads (on average 77% per sample) to determine the gene expression levels for each sample. Normalized expression levels of 5 resistant samples were compared to 4 untreated control samples to detect differnetially regulated genes which may contribute to vemurfenib resistance Results: Expression levels of several genes were consistently altered in all resistant samples. Expression of e.g. genes encoding SPRY2, SPRY4, DUSP6, CCND1, PIK3R3, FGFR1, EPHA4, MCL1, and IGF1R was down-regulated, whereas expression of PDGFC, VEGFC, ABCB9 and KITLG was increased. Conclusions: Our study reports several differentially expressed genes which may contribute to vemurafenib resistance in A375 tumor bearing mice Overall design: RNA sequencing of genes expressed in A375 tumors bearing mice treated with vemurafenib until in vivo resistance appeared vs. untreated A375 tumors
A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.
Cell line
View Samples