Analysis to find splicing variants that are differentially expressed in a highly metastatic stomach cancer cell line, MKN45P, versus its parental cell line, MKN45
Identification of a novel protein isoform derived from cancer-related splicing variants using combined analysis of transcriptome and proteome.
Specimen part, Cell line
View SamplesErbB receptor ligands, epidermal growth factor (EGF) and heregulin (HRG), induce dose-dependent transient and sustained intracellular signaling, proliferation and differentiation of MCF-7 breast cancer cells, respectively. In an effort to delineate the ligand-specific cell determination mechanism, we investigated time-course gene expressions induced by EGF and HRG that induce distinct cellular phenotypes in MCF-7 cells. To analyze the effects of ligand dosage and time for the gene expression independently, we developed a statistical method for decomposing the expression profiles into the two effects. Our results indicated that signal transduction pathways devotedly convey quantitative properties of the dose-dependent activation of ErbB receptor to early transcription. The results also implied that moderate changes in the expression levels of numbers of genes, not the predominant regulation of a few specific genes, might cooperatively work at the early stage of the transcription for determining the cell fate. However, the EGF- and HRG-induced distinct signal durations resulted in the ligand-oriented biphasic induction of proteins after 20 min. The selected gene list and HRG-induced prolonged signaling suggested that transcriptional feedback to the intracellular signaling results in a graded to biphasic response in the cell determination process, and that each ErbB receptor is inextricably responsible for the control of amplitude and duration of cellular biochemical reactions.
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
Cell line
View SamplesAberrant activation of signaling pathways controlled in normal epithelial cells by the epidermal growth factor receptor (EGFR) has been linked to cetuximab (a monoclonal antibody against EGFR) resistance in head and neck squamous cell carcinoma (HNSCC). To infer relevant and specific pathway activation downstream of EGFR from gene expression in HNSCC, we generated gene expression signatures using immortalized keratinocytes (HaCaT) subjected to either ligand stimulation or pharmacological inhibition of the signaling intermediaries PI-3-Kinase and MEK or transfected with EGFR, RELA/p65, or HRASVal12. The gene expression patterns that distinguished the various HaCaT variants and conditions were inferred using the Markov chain Monte Carlo (MCMC) matrix factorization algorithm Coordinated Gene Activity in Pattern Sets (CoGAPS). This approach inferred gene expression signatures with greater relevance to cell signaling pathway activation than the expression signatures inferred with standard linear models. Furthermore, the pathway signature generated using HaCaT-HRASVal12 further associated with the cetuximab treatment response in isogenic cetuximab-sensitive (UMSCC1) and -resistant (1CC8) cell lines. Our data suggest that the CoGAPS algorithm can generate gene expression signatures that are pertinent to downstream effects of receptor signaling pathway activation and potentially be useful in modeling resistance mechanisms to targeted therapies.
Gene expression signatures modulated by epidermal growth factor receptor activation and their relationship to cetuximab resistance in head and neck squamous cell carcinoma.
Cell line, Treatment
View SamplesIn previous studies, human dental pulp stem cells (hDPSCs) were mainly isolated from adults. In this manuscript, we tried characterization of hDPSCs isolated from an earlier developmental stage to evaluate potential usage of these cells for tissue regenerative therapy. hDPSCs isolated at the crown-completed stage showed a higher proliferation rate than those isolated at the later stage. When the cells from either group were cultured in medium promoting differentiation towards cells of the osteo/odontoblastic lineage, both became alkaline phosphatase positive, produced calcified matrix, and were also capable of forming dentin-like matrix on scaffolds in vivo. However, during long-term passage, these cells underwent a change in morphology and lost their differentiation ability. The results of a DNA array experiment showed that the expression of a number of genes, such as WNT16, was markedly changed with increasing number of passages, which might have caused the loss of their characteristics as hDPSCs.
Characterization of dental pulp stem cells of human tooth germs.
No sample metadata fields
View SamplesControlled activation of epidermal growth factor receptor (EGFR) is systematically guaranteed at the molecular level, however aberrant activation of EGFR is frequently found in cancer. Transcription induced by EGFR activation often involves coordinated expression of genes that positively and negatively regulate the original signaling pathway, therefore alterations in EGFR kinase activity may reflect changes in gene expression associated with the pathway. In this study, we investigated transcriptional changes following EGF stimulation with or without the EGFR kinase inhibitor Iressa in H1299 human non-small-cell lung cancer cells (parental H1299, H1299 cells which overexpress wild-type: EGFR-WT and mutant EGFR: L858R). Our results clearly showed differences in transcriptional activity in the absence or presence of EGFR kinase activity, and genes sharing the same molecular functions showed distinct expression dynamics. The results showed particular enrichment of EGFR/ErbB signaling-related genes in a differentially expressed gene set, and significant protein expression of MIG6/RALT(ERRFI1), an EGFR negative regulator, was confirmed in L858R. High MIG6 protein expression was correlated with basal EGFR phosphorylation and inversely correlated with EGF-induced ERK phosphorylation levels. Investigation of NCI-60 cell lines showed that ERRFI1 expression was correlated with EGFR expression regardless of tissue type. These results suggest that cells accumulate MIG6 as an inherent negative regulator to suppress excess EGFR activity when basal EGFR kinase activity is considerably high. Taken together, an EGFR mutation can cause transcriptional changes to accommodate the activation potency of the original signaling pathway at the cellular level.
Mutation of epidermal growth factor receptor is associated with MIG6 expression.
Cell line
View SamplesHeregulin beta-1 (HRG) is an extracellular ligand that activates mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt signaling pathways through ErbB receptors. MAPK and Akt have been shown to phosphorylate the estrogen receptor (ER) at Ser-118 and Ser-167, respectively, thereby mimicking the effects of estrogenic activity such as estrogen responsive element (ERE)-dependent transcription. In the current study, integrative analysis was performed using two tiling array platforms, comprising histone H3 lysine 9 (H3K9) acetylation and RNA mapping, together with array comparative genomic hybridization (CGH) analysis in an effort to identify HRG-regulated genes in ER-positive MCF-7 breast cancer cells. Through application of various threshold settings, 333 (326 up-regulated and 7 down-regulated) HRG-regulated genes were detected. Prediction of upstream transcription factors (TFs) and pathway analysis indicated that 21% of HRG-induced gene regulation may be controlled by the MAPK cascade, while only 0.6% of the gene expression is controlled by ERE. A comparison with previously reported estrogen (E2)-regulated gene expression data revealed that only 12 common genes were identified between the 333 HRG-regulated (3.6%) and 239 E2-regulated (5.0%) gene groups. However, with respect to enriched upstream TFs, 4 common TFs were identified in the 14 HRG-regulated (28.6%) and 13 E2-regulated (30.8%) gene groups. These results indicated that while E2 and HRG may induce common TFs, the regulatory mechanisms that govern HRG- and E2-induced gene expression differ.
Integrative genome-wide expression analysis bears evidence of estrogen receptor-independent transcription in heregulin-stimulated MCF-7 cells.
Cell line
View SamplesTo determine the mechanism of cetuximab-resistance in head and neck cancer, a cetuximab-sensitive cell line (SCC1) and its cetuximab-resistant derivative (1Cc8) were analyzed for differentially expressed genes using DNA microarrays. 900 differentially expressed genes were found using the statistical cut-off point of one-way ANOVA with FDR less than 1%.
Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma.
Cell line
View SamplesKeeping imbibed seeds at low temperatures for a certain period, so called seed vernalization (SV) treatment, promotes seed germination and subsequent flowering in various plants. Vernalization-promoting flowering requires GSH. However, the expression patterns analyzed by GeneChip arrays showed that increased GSH biosynthesis partially mimics SV treatment in Arabidopsis thaliana. SV treatment (keeping imbibed seeds at 4C for 24 h) induced a specific pattern of gene expression and promoted subsequent flowering in wild-type plants. A similar pattern was observed at 22C in transgenic plants (35S-GSH1 plants) overexpressing the -glutamylcysteine synthetase gene GSH1, coding an enzyme limiting GSH biosynthesis, under the control of the cauliflower mosaic virus 35S promoter. This pattern was strengthened at 4C but flowering was less responsive to SV treatment. There was a difference in the transcript behaviour of the flowering repressor FLC between wild-type and 35S-GSH1 plants. Unlike other genes responsive to SV treatment, SV-dependent decrease in FLC in wild-type plants was reversed in 35S-GSH1 plants. SV treatment increased GSSG level in wild-type seeds, whereas GSSG level was high in 35S-GSH1 plants, even at a non-vernalizing temperature. Taking into consideration that low temperatures stimulate GSH biosynthesis and bring about oxidative stress, GSSG is considered to trigger low temperature response, but enhanced GSH synthesis was not enough for mimicking SV treatment. To complete it, it essentially required the cellular redox retransition from the oxidized to the reduced state that is observed after the seed vernalization treatment.
Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis.
Specimen part
View SamplesWe observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.
WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View Samples