Comparative analysis of mouse cardiac left ventricle gene expression: voluntary wheel exercise and pregnancy-induced cardiac hypertrophy
Distinct cardiac transcriptional profiles defining pregnancy and exercise.
Sex, Specimen part
View SamplesGenome-wide expression analysis comparison with and without ionizing radiation in p53 mutant and wild type Drosophila larvae
Genome-wide expression analysis identifies a modulator of ionizing radiation-induced p53-independent apoptosis in Drosophila melanogaster.
Sex, Specimen part, Treatment
View SamplesThe Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis. Overall design: Two samples; Control and the heph2 mutant
High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.
Sex, Specimen part, Subject
View SamplesDrosophila PTB (Polypyrimidine Tract-binding protein dmPTB) regulates dorso-ventral patterning genes in embryos Overall design: Comparison of wild type (yw genotype) and PTB mutant (heph03429) drosophila embryos
Drosophila polypyrimidine tract-binding protein (DmPTB) regulates dorso-ventral patterning genes in embryos.
Sex, Specimen part, Subject
View SamplesGene expression profiling on IL-10-secreting and non-secreting murine Th1 cells, stimulated in the presence or absence of the Notch ligand Delta-like 4 (Dll4), was performed to identify transcription factors co-expressed with IL-10.
Role of Blimp-1 in programing Th effector cells into IL-10 producers.
Specimen part
View SamplesUstilago maydis is a plant-pathogenic fungus that establishes a biotrophic relationship with its host Zea mays. The biotrophic interaction is initiated upon host penetration, and involves expansion of the host plasma membrane around hyphae, which is thought to facilitate the exchange of nutrients and virulence factors. Transcriptional regulators involved in the establishment of an infectious dikaryon and penetration into the host have been identified, however, regulators involved in the post-penetration stages remained to be elucidated. In the study we report the identification of an Ustilago maydis forkhead transcription factor, Fox1, which is exclusively expressed during biotrophic development. Deletion of fox1 results in reduced virulence and impaired tumour development in planta. fox1 hyphae induce plant defences including the overproduction and accumulation of H2O2 in and around infected cells. This oxidative burst acts as an intercellular signal, which elicits a specific host defence response phenotypically represented by the encasement of proliferating hyphae in extensions of the plant cell wall. Maize microarrays experiments were performed to identify genes involved in the observed plant defence responses on leaf tissue infected with U. maydis strain SG200fox1 4 dpi.
The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development.
Specimen part
View SamplesIL-22 acts on epithelial cells and has been shown to induce tissue protective and wound healing responses in these cells. But it has recently been decribed that IL-22 exacerbates ileatis after infection with T. gondii.
Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection.
Specimen part, Time
View SamplesL-3,4-dihydroxyphenylalanine (levodopa) treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). While it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene expression changes that occur in sub-classes of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes whose expression is correlated with levodopa dose, many of which are under the control of AP-1 and ERK signaling. In spite of homeostatic adaptations involving several signaling modulators, AP-1-dependent gene expression remains highly dysregulated in direct pathway SPNs (dSPNs) upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.
Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.
Specimen part, Treatment
View SamplesComparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.
Application of a translational profiling approach for the comparative analysis of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View Samples