Blimp-1 expression in T cells extinguishes the T follicular helper cell fate and drives terminal differentiation, but also limits autoimmunity. Although various factors have been described to control Blimp-1 expression in T cells, little is known about what regulates Blimp-1 expression in Th2 cells and the molecular basis of its actions. Herein, we report that STAT3 unexpectedly played a critical role in regulating Blimp-1 in Th2 cells. Furthermore, we found that the cytokine IL-10 acted directly on Th2 cells and was necessary and sufficient to induce optimal Blimp-1 expression through STAT3. Together, Blimp-1 and STAT3 amplified IL-10 production in Th2 cells, creating a strong autoregulatory loop that enhanced Blimp-1 expression. Increased Blimp-1 in T cells antagonized STAT5-regulated cell cycle and anti-apoptotic genes to limit cell expansion. These data elucidate the signals required for Blimp-1 expression in Th2 cells and reveal an unexpected mechanism of action of IL-10 in T cells, providing insights into the molecular underpinning by which Blimp-1 constrains T cell expansion to limit autoimmunity. Overall design: RNAseq of activated undifferentiated CD4 T cells with or without exogenous expression of Blimp-1.
IL-10 induces a STAT3-dependent autoregulatory loop in T<sub>H</sub>2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes.
Specimen part, Subject
View SamplesWe compared expression of genes in brains of SIRT1 brain-specific knockouts (BSKO) to those of wild-type littermate controls (WT).
SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive.
Sex, Age, Specimen part
View SamplesThis work examines sarcoma formation within discrete subsets of KRAS(G12V)-expressing p16p19null myogenic and mesenchymal cells found normally in skeletal muscle. We show that prospectively isolated skeletal muscle precursor cells (SMPs) within the satellite cell pool can serve as cancer cells-of-origin for mouse rhabdomyosarcomas (soft tissue sarcomas with features of myogenic differentiation). Alternatively, non-myogenic progenitors (ScaPCs) induce sarcomas lacking myogenic differentiation markers.
Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells.
Specimen part
View SamplesNovel fluorescence-activated cell sorting (FACS) strategies to prospectively purify functionally distinct cell populations from the human myofiber-associated (hMFA) cell compartment, including human Skeletal Muscle Precursor cells (hSMPs):
Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle.
No sample metadata fields
View SamplesDoxycycline-inducible YAP1 S127A-driven rhabdomyosarcoma (RMS) tumors, control skeletal muscle and regressed tumors following YAP1 normalization by doxycycline withdrawal were compared to determine the YAP1-regulated gene expression profile relevant to RMS formation.
The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation.
Specimen part
View SamplesBackground: Several genetic defects of the nucleotide excision repair (NER) pathway, including deficiency of the Excision Repair Cross-Complementing rodent repair deficiency, complementation group 1 (ERCC1), result in pre-mature aging, impaired growth, microcephaly and delayed development of the cerebellum. Such a phenotype also occurs in ERCC1-knockout mice which survive for up to 4 weeks after birth. Therefore, we analyzed cerebellar and hippocamapal transcriptomes of these animals at 3 weeks of age to identify the candidate mechanisms underlying brain consequences of reduced ERCC1 activity.
Downregulation of cholesterol biosynthesis genes in the forebrain of ERCC1-deficient mice.
No sample metadata fields
View SamplesWhile activation of canonical NF-?B signaling through the IKK complex is well studied, few regulators of NIK-dependent non-canonical p52 nuclear translocation have been identified. We discovered a novel role for cyclin dependent kinase 12 (CDK12) in transcriptionally regulating the non-canonical NF-?B pathway. High-content phenotypic screening identified a novel compound, 919278, which inhibits lymphotoxin ß receptor (LTßR)- and FN14-dependent p52 nuclear translocation, but not TNFa receptor (TNFR)-mediated, canonical NF-?B p65 nuclear translocation. Chemoproteomics identified cyclin dependent kinase 12 (CDK12) as the target of 919278. CDK12 inhibition by 919278, THZ1, or siRNA knock down all affect similar global transcriptional changes and prevent LTßR and FN14-dependent MAP3K14 (NIK) mRNA induction and subsequent protein accumulation. In addition, 919278 and THZ1 treatment reduce RNA Pol II CTD phosphorylation. This powerful approach of coupling a phenotypic screen with chemoproteomics revealed a novel regulatory pathway of the non-canonical NF-?B pathway that could serve as a therapeutic target in autoimmunity and cancer. Overall design: There are TWEAK stimulated and unstimulated conditions, 4hr and 24hr time points. 7 treatments (DMSO, BIO0702697, BIO0919278, BIO032202, NTsiRNA, siRNAs523626, siRNAs523629) in duplicates. In total, 56 sample were sequenced and analyzed.
CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling.
Cell line, Treatment, Subject, Time
View SamplesThe response of drosophila to bacterial and fungal infections involves two signaling pathways, Toll and Imd, which both activate NF-kB family members. We have studied the global transcriptional response of flies to infection with drosophila C virus. Viral infection induced a set of genes distinct from those regulated by the Toll or Imd pathways, and triggered activation of a STAT binding activity. Genetic experiments showed that the JAK kinase Hopscotch was involved in the control of the viral load in infected flies, and was required, though not sufficient, for the induction of some virus-regulated genes. Our results indicate that in addition to Toll and Imd, a third evolutionary conserved innate immunity pathway operates in drosophila and counters viral infection.
The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila.
No sample metadata fields
View SamplesThe edible mushroom Agaricus blazei Murill has immunomodulating and antiproliferative effects. In a clinical study 33 patients with multiple myeloma were randomized to receive treatment with Agaricus (16 patients) or placebo (17 patients) in addition to chemotherapy.
Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study.
Specimen part, Treatment, Subject, Time
View SamplesAging is associated with the decline of protein, cell, and organ function. Here, we use an integrated approach to characterize gene expression, bulk translation, and cell biology in the brains and livers of young and old rats. We identify 468 differences in protein abundance between young and old animals. The majority are a consequence of altered translation output, that is, the combined effect of changes in transcript abundance and translation efficiency. In addition, we identify 130 proteins whose overall abundance remains unchanged but whose sub-cellular localization, phosphorylation state, or splice-form varies. While some protein-level differences appear to be a generic property of the rats' chronological age, the majority are specific to one organ. These may be a consequence of the organ's physiology or the chronological age of the cells within the tissue. Taken together, our study provides an initial view of the proteome at the molecular, sub-cellular, and organ level in young and old rats. Overall design: RNA-Seq and ribosome profiling from matched young and old rat liver and brain
Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats.
No sample metadata fields
View Samples