Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimers disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.
Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury.
Sex, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.
Sex, Specimen part, Treatment, Time
View SamplesBlast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7-14 and attenuated genes regulated by blast at day 14 post-injury. The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life.
Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4.
Sex, Specimen part
View SamplesTraumatic brain injury (TBI) is a global problem reaching near epidemic numbers that manifests clinically with cognitive problems that decades later may result in dementias like Alzheimers disease (AD). Presently, little can be done to prevent ensuing neurological dysfunctions by pharmacological means. Recently, it has become apparent that several CNS diseases share common terminal features of neuronal cell death. The effects of exendin-4 (Ex-4), a neuroprotective agent delivered via a subcutaneous micro-osmotic pump, were examined in the setting of mild TBI (mTBI). Utilizing a model of mTBI, where cognitive disturbances occur over time, animals were subjected to four treatments: sham; Ex-4; mTBI and Ex-4/mTBI. mTBI mice displayed deficits in novel object recognition, while Ex-4/mTBI mice performed similar to sham. Hippocampal gene expression, assessed by gene array methods, showed significant differences with little overlap in co-regulated genes between groups. Importantly, changes in gene expression induced by mTBI, including genes associated with AD were largely prevented by Ex-4. These data suggest a strong beneficial action of Ex-4 in managing secondary events induced by a traumatic brain injury.
Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice.
Sex, Specimen part, Treatment, Time
View SamplesIn this study gene expression of monocyte-derived macrophages (MDM) from chronic obstructive pulmonary disease (COPD) patients and healthy subjects was investigated. MDM were treated with LPS, a combination of fine TiO2 and ultrafine Printex90 particles, or remained untreated.
Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids.
No sample metadata fields
View SamplesNMJ Junction various time points normal C57BL10 LCM mRNA
Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction.
No sample metadata fields
View SamplesThis is a large series human Duchenne muscular dystrophy patient muscle biopsies, in specific age groups, using all available Affymetrix arrays (including a custom MuscleChip produced by the Hoffman lab). Both mixed groups of patients (5 patient biopsies per group) and individual biopsies were done.
Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology.
No sample metadata fields
View SamplesWnt signaling is intrinsic to mouse embryonic stem cell self-renewal. Therefore it is surprising that reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is not strongly enhanced by Wnt signaling. Here, we demonstrate that active Wnt signaling inhibits the early stage of reprogramming to iPSCs, while it is required and even stimulating during the late stage. Mechanistically, this biphasic effect of Wnt signaling is accompanied by a change in the requirement of all four of its transcriptional effectors: Tcf1, Lef1, Tcf3, and Tcf4. For example, Tcf3 and Tcf4 are stimulatory early but inhibitory late in the reprogramming process. Accordingly, ectopic expression of Tcf3 early in reprogramming combined with its loss-of-function late enables efficient reprogramming in the absence of ectopic Sox2. Together, our data indicate that the step-wise process of reprogramming to iPSCs is critically dependent on the stage-specific control and action of all four Tcfs and Wnt signaling.
Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins.
Specimen part, Time
View SamplesThe vascular lining cells in the human spleens include littoral cells (LCs) and other splenic vascular endothelial cells (SVECs). LCs that comprise about 30 percent of the splenic red pulp are specialzed endothelial cells distinct from SVECs. They line the splenic sinusoids and function as the filters and scavengers for senescent or altered red blood cells. Patients with advanced forms of myelofibrosis (MF) often develope extramedullary hematopoiesis in the spleen.Vascular lining cells within MF spleens are thought to serve as a supportive microenvironment for MF hematopoietic cells. In this study we isolated MF and normal LCs and SVECs from human spleens using immunostaining and flow cytometric sorting and used microarrays to analyze the underling mechanism of LCs' unique functions that distinguish them from SVECs, and the properties of MF LCs and SVECs and their contributions to the microenvironment of MF spleens.
The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis.
Specimen part, Disease stage
View SamplesWe used microarrays to find Stat6 dependent genes in control and IL-4 exposed bone marrow derived macrophages.
Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2.
Specimen part
View Samples