Small RNA libraries from total RNA isolated from adult ovaries Overall design: Small RNA libraries were derived from Ovaries of the Founder strain and their offspring and their reciprocal offspring. RNA from 5 individual ovaries was pooled .
piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.
No sample metadata fields
View SamplesEpithelial ovarian cancer is a very heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Rational therapeutic approaches need to account for interpatient and intratumoral heterogeneity in treatment design. Detailed characterization of in vitro models representing the different histological and molecular subtypes is therefore imperative. Strikingly, from ~100 available ovarian cancer cell lines the origin and which subtype they represent is largely unknown. We have extensively and uniformly characterized 39 ovarian cancer cell lines (with mRNA/microRNA expression, exon sequencing, dose response curves for clinically relevant therapeutics) and obtained all available information on the clinical features and tissue of origin of the original ovarian cancer to refine the putative histological subtypes. From 39 ovarian cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes (21 Epithelial, 7 Round, 12 Spindle) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes for the Spindle subtype. Clinical validation showed a clear association of the spindle-like tumors with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the morphological subtypes associated with the molecular C1-6 subtypes identified by Tothill et al. [1], Spindle clustered with C1-stromal subtype, Round with C5-mesenchymal and Epithelial with C4 subtype. We provide a uniformly generated data resource for 39 ovarian cancer cell lines, the ovarian cancer cell line panel (OCCP). This should be the basis for selecting models to develop subtype specific treatment approaches, which is very much needed to prolong the survival of ovarian cancer patients.
Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.
Cell line
View SamplesWe identified a tumor signature of 5 genes that aggregates the 156 tumor and normal samples into the expected groups. We also identified a histology signature of 75 genes, which classifies the samples in the major histological subtypes of NSCLC. A prognostic signature of 17 genes showed the best association with post-surgery survival time. The performance of the signatures was validated using a patient cohort of similar size
Gene expression-based classification of non-small cell lung carcinomas and survival prediction.
Sex, Specimen part
View SamplesMyosin IIa-deficient follicular B cells have a hyperactivated phenotype. To identify what pathways are regulated by myosin IIa, we performed RNA-seq of coding RNA on flow cytometry sorted follicular B cells from CD23Cre+Myh9fl/fl and CD23Cre+Myh9wt/fl mice. Overall design: B220+AA4.1-CD23+CD21lo follicular B cells were sorted from 3 CD23Cre+Myh9fl/fl and 3 CD23Cre+Myh9wt/fl mice and mRNA was isolated and sequenced.
Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesTo identify a cohort of rhythmically expressed genes in the murine Distal Colon,microarrays were used to measure gene expression over a 24-hour light/dark cycle.The rhythmic transcripts were classified according to expression patterns, functions and association with physiological and pathophysiological processes of the colon including motility, colorectal cancer formation and inflammatory bowel disease.
Transcriptional profiling of mRNA expression in the mouse distal colon.
No sample metadata fields
View Samples