The goal of this experiment was to determine gene expression changes during influenza A virus infection as the result of expression influenza virus inducible miRNAs in A549 cells.
Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.
Cell line
View SamplesDiffuse infiltrating gliomas are the most common primary brain malignancy found in adults, and Glioblastoma multiforme, the highest grade glioma, is associated with a median survival of 7 months. Transcriptional profiling has been applied to 85 gliomas from 74 patients to elucidate glioma biology, prognosticate survival, and define tumor sub-classes. These studies reveal that transcriptional profiling of gliomas is more accurate at predicting survival than traditional pathologic grading, and that gliomas characteristically express coordinately regulated genes of one of four molecular signatures: neurogenesis, synaptic transmission, mitotic, or extra-cellular matrix. Elucidation of these survival associated molecular signatures will aid in tumor prognostication and define targets for future directed therapy.
Gene expression profiling of gliomas strongly predicts survival.
Sex, Age, Specimen part, Disease stage
View SamplesMigrated from 1.6 id: 1015897590491013 GEDP id: 760 In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.
Gene expression profiling of gliomas strongly predicts survival.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesAssessment of mRNA expression levels in fat biopsies from subcutaneous adipose tissue from unrelated individuals.
A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.
Specimen part
View SamplesInduced pluripotent stem (iPS) cells can be obtained from fibroblasts by expression of Oct4, Sox2, Klf4, and c-Myc. To determine how these factors induce this change in cell identity, we carried out genomewide promoter analysis of their binding in iPS and partially reprogrammed cells. Most targets in iPS cells are shared with ES cells and the factors cooperate to activate the ES-like expression program. In partially reprogrammed cells, genes bound by c-Myc have achieved a more ES-like binding and expression pattern. In contrast, genes that are co-bound by Oct4, Sox2, and Klf4 in ES cells and that encode pluripotency regulators show severe lack of both binding and transcriptional activation. Among the factors, c-Myc has a pivotal effect on the initiation of the ES transcription program, including the repression of fibroblast-specific genes. Our analysis begins to unravel how the four factors function together and suggests a temporal and separable order of their effects during reprogramming.
Role of the murine reprogramming factors in the induction of pluripotency.
No sample metadata fields
View SamplesTissue-resident mononuclear phagocytes (MNPs) in metabolic organs contribute to the regulation of whole body metabolism. CD301b+ MNPs are a subset of MNPs that are found in most peripheral organs including metabolic organs. In a mouse model in which CD301b+ MNPs can be selectively and transiently depleted, we examined the impact of the depletion on gene expression in the white adipose tissue and the liver.
CD301b(+) Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha.
Specimen part
View SamplesSymptomatic glycerol kinase deficiency (GKD) is associated with episodic metabolic and central nervous system deterioration. We report here the first application of Weighted Gene Co-Expression Network Analysis (WGCNA) to investigate a knockout (KO) murine model of a human genetic disease. WGCNA identified networks and key hub transcripts from liver mRNA of glycerol kinase (Gyk) KO and wild type (WT) mice. Day of life 1 (dol1) samples from KO mice contained a network module enriched for organic acid metabolism before Gyk KO mice develop organic acidemia and die on dol3-4 and the module containing Gyk was enriched with apoptotic genes. Roles for the highly connected Acot, Psat and Plk3 transcripts were confirmed in cell cultures and subsequently validated by causality testing. We provide evidence that GK may have an apoptotic moonlighting role that is lost in GKD. This systems biology strategy has improved our understanding of GKD pathogenesis and suggests possible treatments.
Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice.
Sex, Specimen part
View SamplesOverexpression of USF1 in HEK293T cells in vitro to ascertain the genes downstream of USF1. Will identify direct targets as well as indirect targets of USF1.
A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.
Cell line
View SamplesImmunologic dysfunction, mediated via monocyte activity, has been implicated in the development of HIV-associated neurocognitive disorder (HAND). We hypothesized that transcriptome changes in peripheral blood monocytes relate to neurocognitive functioning in HIV+ individuals, and that such alterations could be useful as biomarkers of worsening HAND. METHODS: mRNA was isolated from the monocytes of 86 HIV+ adults and analyzed with the Illumina HT-12 v4 Expression BeadChip. Neurocognitive functioning, HAND diagnosis, and other clinical and virologic variables were determined.
Transcriptome analysis of HIV-infected peripheral blood monocytes: gene transcripts and networks associated with neurocognitive functioning.
Age, Specimen part, Disease, Disease stage, Race
View SamplesPurpose: This study is designed to identify genes and processes that are differentially regulated in corn when it is grown with or without weeds through the entire critical weed free period (to V8) or when weeds were removed early in the critical weed free period (at V4) and the plants were allowed to recover until V8. Methods: Corn was grown as described above in field plots near Brookings SD in 2007 and 2008 and RNA was extracted from the top-most leaf tips from four plants per treatment plot. Unidirectional cDNA illumina sequencing libraries were constructed for each sample (pooled leaf tips from the given plot), and were sequenced (some samples were paired end sequenced and some were single end sequenced - all 100 bases for PE and SE reads), quality trimmed, and analyzed using the Tuxedo suite of programs for SE reads of the forward read libraries for each sample. Results: We identified a small number of genes that were differentially expressed in both years. More importantly, gene set enrichment analysis of the data determined that weeds, when present through the critical weed free period impacted phytochrome signaling, defense responses, photosynthetic processes, oxidative stress responses, and various hormone signaling processes. When weeds were removed at V4 and the plants allowed to recover until V8, the weeds still imprinted impacts on phytochrome signaling, oxidative stress, and defense responses. Thus, it appears that weeds presence through the early portion of the critical weed free period, even after removal, induced processes that reduce corn growth and yield that lasted at least through V8. Conclusions: This study represents the first investigation of the impact of the lasting effects of weeds during the early critical weed free period on the transcriptome of corn, and provides additional data on the impact of weeds through the critical weed free period that augments and confirms much of what was observed in similar microarray studies. Overall design: Experimental Design: Samples all collected at the same developmental stage (V8) from three treatments (control, weedy, and weeds removed followed by recovery), in each of two years (2007 and 2008), with two to three biological replicates of each treatment in each year.
Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period.
Specimen part, Cell line, Subject
View Samples