Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study.
Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.
Sex, Age, Specimen part, Disease, Subject
View SamplesAsthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues including epithelial and T cells.
Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.
Sex, Subject
View SamplesTranscripomic analysis of leaf gene expression in S and N-deficient winter wheat during grain development. Tissue was harvested at anthesis and 7, 14 and 21 days post anthesis from experimental field plots.
Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesThe goal of this study was to determine the effects of dietary selenium levels on translational control of selenoprotein synthesis in mouse liver. Overall design: Wild type mice and mice expressing a mutant Sec-tRNA gene (TrspA37G) were fed diets supplemented with 0, 0.1, or 2 ppm selenium for 6 weeks. Livers were harvested and ribosome and mRNA profiles were generated by deep-sequencing using the Illumina HiSeq 2000.
Translational redefinition of UGA codons is regulated by selenium availability.
Age, Cell line, Treatment, Subject
View SamplesThis present study is the first to investigate the global changes in host gene expression during the interaction of human bronchial epithelial cells and live Alternaria spores. Human bronchial epithelial cells (BEAS2-B) were exposed to spores or media alone for 24 hours. RNA was collected from three biological replicates/treatment and used to assess changes in gene expression patterns using Affymetrix Human Genome U133 Plus 2.0 Arrays. Interestingly, many cytokine/chemokine immune response genes were upregulated. Genes involved in cell death, retinoic acid signaling, TLR3, and interferon response pathways were also significantly upregulated.
Analysis of global gene expression changes in human bronchial epithelial cells exposed to spores of the allergenic fungus, Alternaria alternata.
Cell line, Treatment
View SamplesRNA from A673 cells with shRNA-mediated knockdown of GFP (4 libraries), EWS-FLI1 (4 libraries), or lnc277 (7 libraries) was isolated with TRIzol (Invitrogen). Each sample was DNase treated and further purified on an RNeasy Mini column (Qiagen) before quality analysis on an Agilent 2100 Bioanalyzer. For each sample, 100-150ng of RNA was synthesized into cDNA, sheared on a Covaris ultrasonicator, and amplified using the NuGen Encore Complete kit (NuGen) to produce strand-specific and rRNA-depleted libraries. Samples were multiplexed (4/lane) for 2x100bp paired-end sequencing on an Illumina HiSeq 2000 Overall design: RNA from A673 cells with shRNA-mediated knockdown of GFP (4 libraries), EWS-FLI1 (4 libraries), or lnc277 (7 libraries) was isolated with TRIzol (Invitrogen).
Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis.
No sample metadata fields
View SamplesEwing sarcoma is a highly aggressive tumor characterized by a translocation between members of the FET family of RNA binding proteins and one of several ETS transcription factors, with the most common translocation being EWS-FLI1. EWS-FLI1 leads to changes in gene expression through mechanisms that are not completely understood. We performed RNA sequencing analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify novel target genes. This analysis identified lnc277 as a previously uncharacterized long non-coding RNA upregulated by EWS-FLI1 in pMPCs. Inhibiting the expression of lnc277 diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar whereas inhibiting lnc277 had no effect on other cell types tested. By analyzing gene expression after shRNA knockdown, we found that both EWS-FLI1 and lnc277 repressed many more genes that they induced and that a significant fraction of EWS-FLI1 repressed targets were also repressed by lnc277. Analysis of primary human Ewing sarcoma RNA sequencing data further supports a role for lnc277 in mediating gene repression. We identified hnRNPK as an RNA binding protein that interacts directly with lnc277. We found a significant overlap in the genes repressed by hnRNPK and those repressed by both EWS-FLI1 and lnc277, suggesting that hnRNPK participates in lnc277 mediated gene repression. Thus, lnc277 is a previously uncharacterized long non-coding RNA downstream of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes. Our studies identify a novel mechanism of oncogenesis downstream of a chromosomal translocation and underscore the importance of lncRNA-mediated gene repression as a mechanism of EWS-FLI1 transcriptional regulation. Overall design: RNA from primary human bone marrow derived mesenchymal cells either control or with inducible expression of EWS-FLI1 for 13 days was used to prepare PolyA selected cDNA libraries.
Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis.
No sample metadata fields
View SamplesEwing sarcoma is a highly aggressive tumor characterized by a translocation between members of the FET family of RNA binding proteins and one of several ETS transcription factors, with the most common translocation being EWS-FLI1. EWS-FLI1 leads to changes in gene expression through mechanisms that are not completely understood. We performed RNA sequencing analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify novel target genes. This analysis identified lnc277 as a previously uncharacterized long non-coding RNA upregulated by EWS-FLI1 in pMPCs. Inhibiting the expression of lnc277 diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar whereas inhibiting lnc277 had no effect on other cell types tested. By analyzing gene expression after shRNA knockdown, we found that both EWS-FLI1 and lnc277 repressed many more genes that they induced and that a significant fraction of EWS-FLI1 repressed targets were also repressed by lnc277. Analysis of primary human Ewing sarcoma RNA sequencing data further supports a role for lnc277 in mediating gene repression. We identified hnRNPK as an RNA binding protein that interacts directly with lnc277. We found a significant overlap in the genes repressed by hnRNPK and those repressed by both EWS-FLI1 and lnc277, suggesting that hnRNPK participates in lnc277 mediated gene repression. Thus, lnc277 is a previously uncharacterized long non-coding RNA downstream of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes. Our studies identify a novel mechanism of oncogenesis downstream of a chromosomal translocation and underscore the importance of lncRNA-mediated gene repression as a mechanism of EWS-FLI1 transcriptional regulation. Overall design: A673 Ewing cells expressing an shRNA targeting hnRNPK or control were subjected to paired end RNA sequencing and compared to shGFP control.
Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis.
No sample metadata fields
View SamplesShort-term bed rest is used to simulate muscle disuse in humans. In our previous reports, we found that 5d of bed rest induced a ~4% loss of skeletal muscle mass in OLD (60-79 y) but not YOUNG (18-28 y) subjects. Identifying muscle transcriptional events in response to bed rest and age-related differences will help identify therapeutic targets to offset muscle loss in vulnerable older adult populations. Skeletal muscle dysregulation during bed rest in the old may be driven by alterations in molecules related to fibrosis, inflammation, and cell adhesion. This information may aide in the development of mechanistic-based therapies to combat muscle atrophy during short-term disuse. Short-term muscle disuse is also characterized by skeletal muscle insulin resistance, though this response is divergent across subjects. The mechanisms regulating inactivity-induced insulin resistance between populations that are more or less susceptible to disuse-induced insulin resistance are not known, and delineated by age. High Susceptibility participants were uniquely characterized with muscle gene responses described by a decrease in pathways responsible for lipid uptake and oxidation, decreased capacity for triglyceride export (APOB), increased lipogenesis (i.e., PFKFB3, FASN), and increased amino acid export (SLC43A1). Overall design: RNA was isolated and sequenced from muscle biopsies obtained from the vastus lateralis of YOUNG (N=9) and OLD (N=18) men and women before and after five days of bed rest. Sequencing libraries (18 pM) were chemically denatured and applied to an Illumina TruSeq v3 single read flowcell using an Illumina cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with reagents from an Illumina TruSeq SR Cluster Kit v3-cBot-HS (GD-401-3001). Following transfer of the flowcell to an Illumina HiSeq 2500 instrument (HCS v2.0.12 and RTA v1.17.21.3), a 50 cycle single read sequence run was performed using TruSeq SBS v3 sequencing reagents (FC-401-3002). The design formula was constructed by following the section on group-specific condition effects, individuals nested within groups in the DESeq2 vignette. The design included age + age:nested + age:time to test for differences in bed rest in old subjects, young subjects and the interaction, in this case if bed rest effects are different between the two age groups (where age is young or old, nested is patient number nested by age and time is pre- or post-bed rest). A similar design was used to determine susceptibility to disuse-induced insulin resistance, where “susceptibility” took the place of “age”.
Disuse-induced insulin resistance susceptibility coincides with a dysregulated skeletal muscle metabolic transcriptome.
Sex, Specimen part, Subject, Time
View SamplesDrosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three FruM isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of FruM isoforms. Overall design: RNA seqeuncing was performed on mRNA derived from adult male or female heads, for a total of 39 samples. These samples included two wild type genotypes (Berlin and Canton-S), two transheterozygous mutants for fru P1 (Df(3R)P14/Df(3R)fru4-40 and fruw12/ Df(3R)ChaM5), and 3 overexpressing genotypes (fru P1-Gal4: UAS-FruMA, UAS-FruMB, UAS-FruMC). There were at least 3 replicates from biological samples for all sex by genotype combinations.
Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex.
Sex, Specimen part, Cell line, Subject
View Samples