Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPR). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrate that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/ß-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gaz complexes near the membrane and promotes ß-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gaz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction. Overall design: Understanding the impact of morphine tolerance and the influence of RGSz1 on gene expression in the PAG
Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway.
Sex, Specimen part, Treatment, Subject
View SamplesRegulation of gene expression at the post-transcriptional level plays an indispensable role during TGFbeta-induced EMT and metastasis. This regulation involves a transcript-selective translational regulatory pathway in which a ribonucleoprotein (mRNP) complex, consisting of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) and eukaryotic elongation factor 1A1 (eEF1A1), binds to a 3-UTR regulatory BAT (TGF activated translation) element and silences translation of Dab2 and ILEI mRNAs, two transcripts which are involved in mediating EMT. TGFbeta activates a kinase cascade terminating in the phosphorylation of hnRNP E1, by isoform-specific stimulation of protein kinase B/Akt2, inducing the release of the mRNP complex from the 3-UTR element, resulting in the reversal of translational silencing and increased expression of Dab2 and ILEI transcripts.
Establishment of a TGFβ-induced post-transcriptional EMT gene signature.
Specimen part
View SamplesHPV E6 from the genus alpha 'high risk' types such as HPV16 recruit the ubiquitin ligase E6AP to ubiquitinate p53 and target it for proteasome-mediated degradation. This results in the functional inactivation of p53 in HPV16-E6 expressing cells.
Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes.
Specimen part, Cell line
View SamplesIdiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP) are the 2 most common forms of idiopathic interstitial pneumonia. Response to therapy and prognosis are remarkably different. The clinical-radiographic distinction between IPF and NSIP may be challenging. We sought to investigate the gene expression profile of IPF vs. NSIP
Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis.
Specimen part, Disease, Disease stage
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on tissue samples from the cortex of 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
No sample metadata fields
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Corpus Striatum tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Cerebral Cortex tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Liver tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Transcriptional profiling of muscle in treated and untreated wild-type and R6/2 mice was performed to analyze the effect of the ActRIIB decoy on genes and pathways involved in maintaining normal muscle physiology as well as those dysregulated due to the mutant HTT gene mutation. Overall design: RNAseq was performed on tibialis muscle from wild-type, wildtype + decoy, R6/2 and R6/2 + decoy; N = 10 per group. RNAseq was done on an Illumina Hi-seq 2000. Paired-end sequencing was obtained, 4-plexed across lanes for a minimum of 38 million 50mer paired reads per sample
Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesStudy the training exercise effects in chronic obstructive pulmonary disease (COPD) patients and aged-matched healthy individuals. Skeletal muscle biopsies from 9 stable COPD patients with normal fat free mass index (FFMI, 21Kg/m2) (COPDN), 6 COPD patients with low FFMI (16Kg/m2) (COPL), and 12 healthy sedentary subjects (FFMI 21Kg/m2) before and after 8 weeks of a supervised endurance exercise program were analyzed.
A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.
Specimen part, Disease, Disease stage, Subject
View Samples