We hypothesized that altered extracellular osmolality per se could affect the transcriptome of the kidney inner medullary collecting duct (IMCD) cells, and hence it might change renal tubular function. The data sets of transcriptomics were incorporated into the "omic" data sets of metabolomics. Primary cultured IMCD cells of rat kidney were grown in hyperosmolar culture medium (640 mOsm/KgH2O) for 4 d, and then the cells were cultured in the medium with either reduced (300 mOsm/KgH2O) or the same osmolality for 1 or 2 d more.
Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct.
Sex, Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart.
Age
View SamplesAngiogenesis induced by placental growth factor (PlGF) in heart promotes myocardial hypertrophy through the paracrine action of endothelium-derived nitric oxide which triggers the degradation of RGS4 and subsequent the activation of Akt/mTORC1 pathway in cardiomyocytes. However, whether alterations in miRNAs contribute to the development of hypertrophy is largely undetermined.
miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart.
Age
View SamplesCompatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different generations of microarrays can be combined more effectively. The dataset of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays for this purpose. Signal values from GCOS 1.2 with Detection call and p-value are provided here, and CEL files are also available for download.
Combining gene expression data from different generations of oligonucleotide arrays.
No sample metadata fields
View SamplesOur current study showed that the ABA and ethylene signal transduction pathways function in parallel and have antagonistic interaction during seed germination and early seedling growth. To further address the possible mechanism by which these two hormones crosstalk, microarray analysis was performed. By microarray analysis we found that an ACC oxidase (ACO) was significantly up-regulated in the aba2 mutant, whereas the 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED3) gene in ein2, and both the ABSCISIC ACID INSENSITIVE1 (ABI1) and cytochrome P450, family 707, subfamily A, polypeptide 2 (CYP707A2) genes in etr1-1 were up- and down-regulated, respectively. These data further suggest that ABA and ethylene may control the hormonal biosynthesis, catabolism or signaling of each other to enhance their antagonistic effects upon seed germination and early seedling growth.
Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways.
No sample metadata fields
View SamplesTransactive response DNA-binding protein of 43 kDa (TDP-43), a heterogeneous nuclear ribonucleoprotein (hnRNP) with diverse activities, is a common denominator in several neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Orthologs of TDP-43 exist from mammals to invertebrates, but their functions in lower organisms remain poorly understood. Here we systematically studied mutant Caenorhabditis elegans lacking the nematode TDP-43 ortholog, TDP-1. To understand the global gene expression regulation induced by the loss of tdp-1, the C. elegans transcriptomes were compared between the N2 WT animals and the tdp-1(ok803lf) mutant. Transcriptional profiling demonstrated that the loss of TDP-1 altered expression of genes functioning in RNA processing and protein folding. These results suggest that the C. elegans TDP-1 as an RNA-processing protein may have a role in the regulation of protein homeostasis and aging.
Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span.
No sample metadata fields
View SamplesTraumatic spinal cord injury (SCI) often leads to loss of locomotor function. Neuroplasticity of spinal circuitry underlies some functional recovery and therefore represents a therapeutic target to improve locomotor function following SCI. However, the cellular and molecular mechanisms mediating neuroplasticity below the lesion level are not fully understood. The present study performed a gene expression profiling in the rat lumbar spinal cord at 1 and 3 weeks after contusive SCI at T9. The below-level gene expression profiles were compared with those of animals that were subjected to treadmill locomotor training.
Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training.
Sex, Age, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transposable elements have rewired the core regulatory network of human embryonic stem cells.
Specimen part, Disease, Cell line, Time
View SamplesA majority of metazoan mRNAs are under microRNA (miRNA)/Argonaute (Ago)-mediated control of RNA stability at the post-transcriptional level. Although the molecular mechanism of the miRNA-mediated repression of target mRNAs through Ago/TNRC6 pathway have been largely elucidated, however, the existence of alternative TNRC6-independent miRNA-mediated post-transcriptional gene regulation pathway remains unknown. Here, we suggest that endogenous miRNAs (endo-miRNAs) can downregulate the target mRNAs via the alternative molecular pathway, Ago-associated UPF1/SMG7, core mediators of nonsense-mediated mRNA decay. Global analyses of mRNAs in a response to UPF1 RNA interference in miRNA-deficient cells reveal that 3'UTR-length-dependent mRNA decay by UPF1 requires endo-miRNA targeting via CUG motif. The repression of miRNA targets is more additively or synergistically accomplished by combination of Ago2 and UPF1 through UPF1-associated SMG7, recruiting CCR4-NOT deadenylase complex, in TNRC6-independent manner. We expect that the new miRNA-mediated mRNA decay pathway enables the miRNA targeting to become more predictable and expand the miRNA-mRNA regulatory network. Overall design: Examination of 11 different knockdown condition in HeLa cell type
UPF1/SMG7-dependent microRNA-mediated gene regulation.
Disease, Cell line, Treatment, Subject
View SamplesWe studied the genomic locations of three key regulatory proteins (OCT4, NANOG and CTCF) in human and mouse embryonic stem (ES) cells [see Series GSE20650]. To identify the conserved and unique human OCT4 targets, we performed an OCT4 RNAi knock-down experiment. We find that species-specific transposable elements have profoundly altered the transcriptional circuitry of pluripotent stem cells.
Transposable elements have rewired the core regulatory network of human embryonic stem cells.
Specimen part, Disease, Cell line, Time
View Samples