Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: Bulk RNA Seq was performed from sort purified DN, SP and DP lymphoid progenitors and BM pDCs of 4 individual mice
Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.
Specimen part, Cell line, Subject
View SamplesPlasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: BM and splenic pDCs were sorted from 3 mice and 3000 cells/sample were used for single cell RNA Seq (10x genomics)
Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mapping gene regulatory circuitry of Pax6 during neurogenesis.
Specimen part
View SamplesPax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system (CNS) development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that, following expression in neural progenitor cells, Pax6 targets many promoters embedded in an active chromatin environment. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6 binding dataset with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesodermal and endodermal genes thereby ensuring the unidirectionality of lineage commitment towards glutamatergic neuronal differentiation. Furthermore, Pax6 is critical for inducing activity of transcription factors that elicit neurogenesis and repress others that promote non-neuronal lineages. In addition to many established downstream effectors, Pax6 directly binds and activates a number of genes that are specifically expressed in neural progenitors but have not been previously implicated in neurogenesis. The in utero knockdown of one such gene, Ift74, during brain development impairs polarity and migration of new-born neurons. These findings demonstrate new aspects of the gene regulatory circuitry of Pax6, revealing how it functions to control neuronal development at multiple levels to ensure unidirectionality and proper execution of the neurogenic program.
Mapping gene regulatory circuitry of Pax6 during neurogenesis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.
Cell line, Treatment
View SamplesUsing a stromal cell free system, we described the gene expression and two genome wide epigenetic profiles of a unique population of undifferentiated bone marrow cells selectively driven towards the T cell differentiation pathway
An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants.
Specimen part, Treatment
View SamplesCellular changes during an epithelial-mesenchymal transition (EMT) largely rely on global changes in gene expression orchestrated by transcription factors.
Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.
Cell line, Treatment
View SamplesAlthough recent studies support regenerative potential based on cardiac progenitor cells (CPCs), it remains unclear what cues regulate CPC fate. Using 2- and 3D-culture models, we demonstrate that the two most abundantly expressed matrix proteins in the heart, laminin and fibronectin, have opposite roles in CPC fate decision. CPCs on fibronectin showed predominantly nuclear localization of the transcriptional co-activator YAP and maintained proliferation. In contrast, seeding on laminin induced cytosolic retention and degradation of YAP and altered gene expression, which preceded decreased proliferation and enhanced lineage commitment. RNA-sequencing identified Plk2 as candidate target gene of YAP. Plk2 expression depended on YAP stability, was rapidly downregulated on laminin, and its regulation was sufficient to rescue and/or mimic the CPC response to laminin and fibronectin, respectively. These findings propose a novel role of Plk2 and identify an early molecular mechanism in matrix-instructed CPC fate with potential implications for therapeutic cardiac regeneration. Overall design: Expression profiling of cardiac progenitor cells in suspension and cultured on dishes coated with laminin or fibronectin or on non-coated dishes (biological triplicates each)
Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.
No sample metadata fields
View SamplesWe investigated the effect of miR-1199-5p, miR-200b-3p and miR-429-3p on gene expression profiles during TGFbeta-induced EMT in normal murine mammary gland cells by using the mRNA-sequencing. Our analysis demonstrates that miR-1199-5p and both miR-200 family members share only 6 target genes, indicating that besides regulating Zeb1 expression they exert distinct functions during EMT. Overall design: mRNA profiles of NMuMG cells transiently overexpressing miR-1199-5p, miR-200b-3p or miR-429-3p and treated with TGFbeta for 4 days
miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis.
Cell line, Subject
View SamplesMessenger RNA levels in eukaryotes are balanced by two consecutive regulatory layers. Primary, transcriptional regulation at the level of chromatin and secondary, post-transcriptional regulation of the initial transcript in the cytoplasm. Each layer is individually studied in mechanistic detail, while integration of both processes is required to quantify the individual contribution to steady-state RNA levels. Here we show that chromatin features are sufficient to model transcription rate but with different sensitivities in dividing versus post mitotic cells. In both cases chromatin derived transcript levels explains over 80% of variance in measured RNA level enabling to separate transcription from different post-transcriptional processes. By further inclusion of measurements of mRNA half-life and micro RNA expression data we identify a low quantitative contribution of RNA decay by either micro RNA or general differential turnover to final mRNA levels. Together this establishes a chromatin based quantitative model for the contribution of transcriptional and posttranscriptional processes to steady-state levels of messenger RNA.
Chromatin measurements reveal contributions of synthesis and decay to steady-state mRNA levels.
Specimen part, Disease, Treatment, Time
View Samples