A diverse pool of RNAs remain encapsulated within the transcriptionally and translationally silent spermatozoon. These transcripts persist within the male gamete despite the dramatic reduction in cellular volume achieved through expulsion of the cytoplasm and quite possibly the nucleoplasm. The precise location of RNAs retained within the sperm cell remains largely unknown. However, early evidence suggested that many are embedded within the nucleus (1). To discern the global pattern of transcript compartmentalization in sperm, total RNA was extracted from whole mouse spermatozoa and detergent demembranated nuclei fractionated through a sucrose gradient. Isolated RNAs were subjected to RNA-sequencing (RNA-seq) and their abundance used to infer localization. Transcripts enriched in the unfractionated cells were related to the production and function of mitochondria and surprisingly, exosomes. The absence of these extracellular vesicles associated RNAs within the inner-nuclear compartment was suggestive of an origin other than sperm. This contributes to the growing evidence for sperm-bound exosomes rich in RNA. In comparison, the majority of the remaining sperm RNAs were associated with the nucleus. This included the abundant fragmented ribosomal transcripts which likely persist between the nuclear envelope and the perinuclear theca. The spermatozoal inner-nuclear compartment was also enriched in repetitive transcribed sequences. This included LINE elements and simple repeat sequences both of which have been shown to contribute to chromatin structure in other cell types suggesting that they may serve parallel roles in the spermatozoon. Overall design: RNA-seq analysis of whole mouse sperm and fractionated nuclei
The protein and transcript profiles of human semen.
No sample metadata fields
View SamplesTranscriptome of testes was examined for comparison of transcript abundance with that of sperm/seminal fluid (as sequenced in separate study) Overall design: Commercially available (Ambion) human testes RNA was prepared and sequenced in two replicates
Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.
No sample metadata fields
View SamplesAlterations in the presence of sperm RNAs have been identified using microarrays in teratozoospermic (abnormal morphology) or other types of infertile patients. However, so far no studies had been reported on the sperm RNA content using microarrays in asthenozoospermic patients (low motility).
Differential RNAs in the sperm cells of asthenozoospermic patients.
No sample metadata fields
View SamplesWe examine how NGS sequencing of sperm can provide a window as to how particular perturbations of the sperm RNA profile from baseline may be indicative of male factor infertility, and may thus provide direction as to proper course of infertility treatment for couple. Overall design: NGS RNA-seq of 72 sperm samples from male partner of couples undergoing fertility treatment
Absence of sperm RNA elements correlates with idiopathic male infertility.
No sample metadata fields
View SamplesX-linked inhibitor of apoptosis (XIAP) is the most potent endogenous caspase inhibitor preventing cell death via caspase-9, -7 and -3 (initiator and executioner caspase pathways). Using short hairpin RNA (shRNA) against XIAP, stably expressed in a parent HCT116 human colon cancer cell line, a series of clones have been developed. XIAP mRNA levels were established by RT-PCR, the four X (XIAP knockdown) clonal cell lines show 82-93% reduction in XIAP mRNA when compared to the four L (luciferase control) cell lines. Immunoblot analysis showed a 67-89% reduction in XIAP protein in X cell lines compared to L. RNA was analysed by microarray and XIAP knockdown was confirmed in 7 probe sets, there was no significant compensation of other IAP family members. XIAP knockdown induced a 2-fold increase in the basal level of apoptosis without modification of caspase 3/7 activity. Finally, XIAP knockdown sensitises cells to radiotherapy by 20%, to recombinant TRAIL by a 3-fold factor, and to paclitaxel and docetaxel by >2 fold factor. Future work should focus on targeted agents such as rhTRAIL in combination with strategies to down regulate XIAP. XIAP antisense is now in clinical development in oncology.
Stable XIAP knockdown clones of HCT116 colon cancer cells are more sensitive to TRAIL, taxanes and irradiation in vitro.
No sample metadata fields
View SamplesPancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients.
CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.
Sex, Specimen part, Treatment
View SamplesAn autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8+ T cells, the mice, like human PDA patients, did not respond to two immunological checkpoint antagonists that promote the function of T cells, a-CTLA-4 and a-PD-L1. Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express Fibroblast Activation Protein (FAP). The depletion of the FAP+ stromal cell also uncovered the anti-tumor effects of a-CTLA-4 and a-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T cell checkpoint antagonists. Three findings suggested that CXCL12 explained the overriding immunosuppression by the FAP+ cell: T cells were absent from regions of the tumor containing cancer cells; cancer cells were coated with the chemokine, CXCL12; and the FAP+ CAF was the principle source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor (CXCR4) inhibitor, induced rapid T cell accumulation among cancer cells, and acted synergistically with a-PD-L1 to selectively and greatly diminish cancer cells, identified by their loss-of-heterozygosity (LOH) of Trp53. The residual tumor was comprised only of pre-malignant epithelial cells and inflammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP+ CAF, may direct tumor immune evasion in a model of human PDA. Overall design: FAP+ cells were sorted from pancreatic ductal adenocarcinoma. Cells were isolated in duplicate experiments and these were analysed separately. These were compared separately to previously published publicly available CD4+ T-cell subset data (C57BL/6 mice and Foxp3-RFP mice (Line 8374) GEO accession GSE20898), and previously published FAP+ cell datasets (transgenic albino (Tyr-/-) C57BL/6 mouse, GEO accession GSE39438).
Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer.
Specimen part, Disease, Disease stage, Subject
View SamplesWe describe a critical role for Cdk6 in JAK2V617F+ MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival of JAK2V617F fl/+ vav-Cre mice. The Cdk6 protein interferes with three hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes NFkB signaling and contributes to cytokine production while inhibiting apoptosis. The treatment with palbociclib did not mirror these effects, showing that the functions of Cdk6 in MPN pathogenesis are largely kinase-independent. Overall design: LSK-sorted (FACS) bone marrow cells from 8-week-old VavCre;Jak2+/+; Cdk6+/+, VavCre;Jak2V617F; Cdk6+/+, VavCre;Jak2V617F; Cdk6-/-, VavCre; Jak2+/+; Cdk6-/- mice, and the same cell type from palbociclib-treated (38mg/kg, 3x in one week) VavCre;Jak2V617F; Cdk6+/+ mice, n=3 for all genotypes
CDK6 coordinates <i>JAK2</i> <sup><i>V617F</i></sup> mutant MPN via NF-κB and apoptotic networks.
Specimen part, Treatment, Subject
View Samples