This SuperSeries is composed of the SubSeries listed below.
A biobank of patient-derived pediatric brain tumor models.
No sample metadata fields
View SamplesWe have generated and comprehensively characterized 30 patient-derived orthotopic xenograft (PDOX) models and 7 cell lines represeneting subgroups of medulloblastoma, high-grade glioma, atypical teratoid/rhabdoid tumor, ependymoma and pineoblastoma.
A biobank of patient-derived pediatric brain tumor models.
No sample metadata fields
View SamplesWe have discovered two major molecular subgroups of PFA molecular group posterior fossa ependymomas by DNA methylation profiling. These are also distinguished by gene expression profiling using Affymetrix U133v2 arrays with correspondence to data generated by DNA methylation profiling.
Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas.
Sex, Specimen part
View SamplesAtypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed a large series of human ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.
Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes.
Sex, Age
View SamplesPrimitive neuroectodermal tumors of the central nervous system (CNS PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children. Using DNA methylation and gene expression profiling we have demonstrated that a significant proportion of institutionally diagnosed CNS PNETs display molecular profiles indistinguishable from those of various other well defined CNS tumor entities, facilitating diagnosis and appropiate therapy for children with these tumors. From the remaining fraction of CNS PNETs, we have identified four distinct new CNS tumor entities extending to other neuroepithelial tumors, each associated with a recurrent genetic alteration and particular histopathological and clinical features. These molecular entities, designated CNS Neuroblastoma with FOXR2 activation (CNS NB FOXR2), CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT CIC), CNS high grade neuroepithelial tumor with MN1 alteration (CNS HGNET MN1), and CNS high grade neuroepithelial tumor with BCOR alteration (CNS HGNET BCOR), will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by these poorly differentiated CNS tumors.
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.
Sex, Age
View SamplesAffymetrix HG U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA) was used to profile transcriptomes and discover altered gene expression in saliva supernatant. Salivary transcriptomic biomarker discovery was performed on 10 lung cancer patients and 10 matched controls.
Development of transcriptomic biomarker signature in human saliva to detect lung cancer.
Disease
View SamplesTo study the molecular mediators of naturally rewarding effects of palatable food we used a model of palatable snacking (Ulrich-Lai et al., 2007) in which rats are given chronic, brief access to a limited amount of sucrose solution (30%). Single housed, male Long-Evans rats (250g) (n=12 per group) from Harlan Labs (Indianapolis, IN) received normal rat chow (Harlan Teklad) and water ad libitum for the duration of the experiment. After a one-week period of acclimation, rats were randomly assigned to drink treatment groups of either 30% sucrose solution or water. Rats received a 14-day regimen of twice daily (9:30 and 15:30) brief (maximum of 30 minutes) limited (up to 4 mL) access of their assigned drink solution. Drink solutions were delivered via a graduated sipper placed onto the cage top in addition to the existing water bottle and sippers were immediately removed when the animal had consumed 4mL or after the 30-minute access period, whichever occurred first. Drink intake, food intake, and body weight were monitored throughout the experiment to verify that the rats learned to drink sucrose, that they adjusted chow intake for calories consumed from sucrose (~10%), and that there was no effect on body weight gain as is normally seen with this model (Ulrich-Lai et al., 2007). Drink treatment terminated on day 14 and at 8:00 on the morning of day 15, the rats were sacrificed by rapid decapitation. BLA tissue was dissected, RNA extracted, and gene expression changes between water and sucrose groups were accessed by microarray.
Pleasurable behaviors reduce stress via brain reward pathways.
Sex, Specimen part, Treatment
View SamplesVocal cord healing is a dynamic process, and many genes and proteins are involved, which play varying roles at different regeneration stages after injury. Previous studies have shown that inflammatory responses occur at the early stage of vocal cord injury, where the fibroblasts proliferate exuberantly with intensive secretion and deposition of ECM. These activities reach the peak at 3-7 days and their intensity begins to decline 15 days later. A study based on the dermal system has shown that ECM remodeling during the repair of injury can last for several months. However, few studies have been conducted as to the dynamic changes of gene expressions and signaling pathway during the healing process of vocal cord injury. Plotting these changes will facilitate the understanding about the physiological changes during healing and the identification of key time points and target genes in fibrosis formation.
Prolactin may serve as a regulator to promote vocal fold wound healing.
Specimen part, Treatment, Time
View SamplesGenetically engineered mouse models (GEMM) of cancer are powerful tools to study multiple aspects of caner biology. We developed a novel GEMM for lung squamous cell carcinoma (LSCC) by genetically combining overexpression of Sox2 with loss of Lkb1: Rosa26LSL-Sox2-IRES-GFP;Lkb1fl/fl (SL). We compared gene expression profiles of SL lung tumors with normal mouse lung tissue, mouse lung adenocarcinoma (LADC) tumors from KrasLSL-G12D/+;Trp53fl/fl (KP), mouse LSCC tumors from Lkb1fl/fl;Ptenfl/fl (LP) model as well as Lenti-Sox2-Cre Lkb1fl/fl. Overall design: Tumors were isolated from formalin-fixed paraffin-embedded (FFPE) tissue samples by microdissection and nucleic acid isolation was performed followed by single-read or paired-end RNA sequencing.
The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment.
Specimen part, Subject
View SamplesTumor-associated neutrophils (TANs) can be conditioned to become “N2” pro-tumorigenic neutrophils in the tumor microenvironment. TANs have been shown to acquire N2 features and promote multiple aspects of tumor growth in mouse models of many cancers, including non-small cell lung cancer. We developed a novel mouse model for lung squamous cell carcinoma (LSCC): Rosa26LSL-Sox2-IRES-GFP;Nkx2-1fl/fl;Lkb1fl/fl (SNL). SNL mice develop tumors with short latency of ~3 months and SNL tumors have high neutrophil infiltration similar to other LSCC mouse models. We employed this novel model and single-cell RNA-sequencing to profile TANs in SNL lung tumors in comparison to peripheral blood neutrophils (PBNs) from tumor-bearing SNL mice. Overall design: Flow cytometry sorted neutrophils (CD45+CD11B+LY6G+) from freshly isolated SNL lung tumors or peripheral blood from tumor-bearing mice were single-cell RNA sequenced with 10X Genomics.
The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment.
Specimen part, Subject
View Samples