Among colicin producing E. coli, colicin M producing strains are the most frequently present in natural populations. Bacteria must be able to sense and respond to unfavourable conditions, resulting in adaptive responses. To gain insight into colicin M ecological role and the purposes related to antimicrobial therapy, the effects of subinhibitory concentrations of colicin M on E. coli whole genome transcription was investigated. We used microarray analysis to follow differential gene expression in E. coli upon colicin M exposure. Colicin M inhibits peptidoglycan synthesis altering expression of genes involved in envelope stress, osmotic and other stresses, exopolysaccharide prodoction, biofilm formation, and cell motility.
Global transcriptional responses to the bacteriocin colicin M in Escherichia coli.
Treatment
View SamplesROR?t is well recognized as the lineage defining transcription factor for TH17 cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here we demonstrate that the transcriptional repressor REV-ERBa is exclusively expressed in TH17 cells, competes with ROR?t for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as ROR?t-dependent, including Il17a. Deletion of REV-ERBa enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as ROR? modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBa negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases. Overall design: 10 samples; 5 conditions with 2 replicates per condition
REV-ERBα Regulates T<sub>H</sub>17 Cell Development and Autoimmunity.
Specimen part, Subject
View SamplesComparing gene expression profile in 3T3-F442A adipocytes with shRNA against TRPV4 or GFP. TRPV4 is an ion channel expressed in adipocytes. Results provided information that how loss-of-function of TRPV4 affects gene expression in adipocytes.
TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis.
No sample metadata fields
View SamplesThe peroxisome proliferator-activated receptor-coactivator-11 (PGC-11) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-11 activation has been suggested to be beneficial for systemic metabolism. Pharmacological PGC-11 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-11 is a transcriptional coactivator with no known ligand-binding activities. Importantly, PGC-11 activation is regulated by several mechanisms but protein stabilization is a limiting step as the protein has a short half-life under unstimulated conditions.
Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration.
Specimen part
View SamplesAnalysis of HEK293T cells overexpressing ZAPS (zinc finger antiviral protein, short form; NP_078901), which is a member of the PARP (poly (ADP-ribose) polymerase)-superfamily. Results of gene profiles provide insight into the role of ZAPS in innate immunity.
ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses.
Specimen part, Cell line
View SamplesThe incidence of pulmonary nontuberculous mycobacterial (PNTM) disease is increasing, but host susceptibility factors are not fully understood. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium complex (MAC) or Mycobacterium abscessus (MAB) and performed transcriptome sequencing (RNA-Seq) to identify relevant gene expression differences. We used cells from 4 different donors in order to try to obtain generalizable data. The differentiated respiratory epithelial cells in ALI were infected with MAC or MAB at MOI of 100:1 or 1000:1, and RNA-seq was performed at 1 and 3 days after infection. We found downregulation of ciliary genes, including several identified with polymorphisms in previous PNTM cohorts. The cytokine IL-32, the superpathway of cholesterol biosynthesis and downstream targets within the IL-17 signaling pathway were all elevated. The integrin signaling pathway was more upregulated by MAB than MAC infection. Working with primary respiratory epithelial cells infected with nontuberculous mycobacteria at ALI, we identified ciliary function, cholesterol biosynthesis, chemokine production and the IL-17 pathway as major targets of host responses to infection. Some of these pathways may be amenable to therapeutic manipulation. Overall design: 44 strand-specific RNA libraries for high-throughput sequencing were prepared (samples from 4 different donors, 57F, 75M, 69F, and 42F, for each condition) using the TruSeq Stranded mRNA Sample Preparation Kit with 750ng of total RNA according to manufacturer's instructions.
Transcriptional Response of Respiratory Epithelium to Nontuberculous Mycobacteria.
No sample metadata fields
View SamplesXBP1 is a transcription factor that is induced by unconventional splicing associated with endoplasmic reticulum stress and plays a role in development of liver and plasma cells. We previously reported that brain derived neurotrophic factor (BDNF) leads to splicing of XBP1 mRNA in neurites, and that XBP1 is required for BDNF-induced neurite extension and branching. To search for the molecular mechanisms of how XBP1 plays a role in neural development, comprehensive gene expression analysis was performed in primary telencephalic neurons obtained from Xbp1 knockout mice at embryonic day 12.5. By searching for the genes induced by BDNF in wild type neurons but this induction was reduced in Xbp1 knockout mice, we found that upregulation of three GABAergic markers, somatostatin (Sst), neuropeptide Y (Npy), and calbindin (Calb1), were compromised in Xbp1 knockout neurons. Attenuated induction of Npy and Calb1 was confirmed by quantitative RT-PCR. In neurons lacking in Xbp1, upregulation of GABAergic markers was attenuated. Impaired BDNF-induced neurite extension in Xbp1 knockout neurons might be mediated by disturbed BDNF-induced differentiation of GABAergic interneurons.
Attenuated BDNF-induced upregulation of GABAergic markers in neurons lacking Xbp1.
Specimen part
View SamplesType 2 diabetes mellitus (T2DM) is a multi-factorial disease characterized by the inability of beta-cells in the endocrine pancreas to produce sufficient amounts of insulin to overcome insulin resistance in peripheral tissue. To investigate the function of miRNAs in T2DM, we sequenced the small RNAs of human islets cells from diabetic and non-diabetic organ donors and identified a cluster of miRNAs in an imprinted locus on human chromosome 14 to be dramatically down-regulated in T2DM islets. These miRNAs are highly and specifically expressed in human beta-cells. The down-regulation of this imprinted locus strongly correlates with increased methylation of its promoter in T2DM islets, providing evidence for an epigenetic modification that contributes to the pathogenesis of T2DM. Targets of the Chr 14q32 cluster of miRNAs were identified by high-throughput sequencing of cross-linked and immunoprecipitated RNA (HITS-CLIP) of Argonaute. We have also identified a unique class of sequences, termed chimeric reads, that represent an in vivo ligation of miRNAs and their targets while in complex with Argonaute, and which allow for the direct identification of miRNA:target relationships in vivo. Overall design: There are three experiments in this submission. All are in human islets or islet cell types. The first is a comparison of miRNA levels in sorted alpha versus beta cells. There is one replicate for this experiment. The second experiment is to measure the expression of miRNAs in whole islets as a function of glucose levels. There are three levels and one replicate for each condition. The third exeriment is a comparison of whole islets taken from human donors that were suspected/confirmed Type 2 diabetic or considered controls. There are 3 controls and 4 T2D samples.
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets.
No sample metadata fields
View SamplesType 2 diabetes mellitus (T2DM) is a complex disease characterized by the inability of the insulin-producing ß-cells in the endocrine pancreas to overcome insulin resistance in peripheral tissues. To determine if microRNAs are involved in the pathogenesis of human T2DM, we sequenced the small RNAs of human islets from diabetic and non-diabetic organ donors. We identified a cluster of miRNAs in an imprinted locus on human chromosome 14q32 that is highly and specifically expressed in human ß-cells and dramatically down-regulated in islets from T2DM organ donors. The down-regulation of this locus strongly correlates with hyper-methylation of its promoter. Using HITS-CLIP for the essential RISC-component Argonaute, we identified disease-relevant targets of the chromosome 14q32 microRNAs, such as IAPP and TP53INP1 that cause increased ß-cell apoptosis upon over-expression in human islets. Our results support a role for microRNAs and their epigenetic control by DNA methylation in the pathogenesis of T2DM. Overall design: Identification of miRNA-target interaction in human islets using HITS-CLIP, one mRNA library and one miRNA library
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets.
No sample metadata fields
View SamplesTo investigate effects of intake of mulberry leaves on hyperlipidemia, we performed gene expression profiling on rat liver by microarray analysis.
Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress.
No sample metadata fields
View Samples