Objective Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. Methods We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. Results Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. Conclusions Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment. Overall design: Examination of differentially expressed genes between gestational day 15 (+/- 0.5 days) C57BL/6 mouse fetal livers from diet-induced (60% fat diet) obese or control female mice.
Maternal high-fat diet and obesity compromise fetal hematopoiesis.
No sample metadata fields
View SamplesIL-2 signals into CD8 T cells have a programming and regulatory role in driving cells to full effector and memory differentiation. This study was designed to look for IL-2 target genes that affect CD8 T cell responses.
Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection.
Sex, Specimen part
View SamplesTranscription termination and mRNA export from the nucleus are closely regulated and coordinated processes. Nuclear export factors are recruited to actively transcribed genes through their interactions with protein complexes associated with transcription and co-transcriptional pre-mRNA processing. We determine a new role for the kinase WNK1 in the cross-talk of transcription termination and mRNA export. WNK1 was previously attributed a cytoplasmic role as a regulator of ion transport. However, we now show a nuclear function for this kinase where it is required for efficient mRNA export along with the transcription termination factor PCF11. Finally, we identify the phosphorylation of the CID domain of PCF11 as an important step for the release of the mRNA from the transcription locus, thus allowing efficient mRNA export to the cytoplasm. Overall design: RNA from cytoplasmic and nuclear extracts of HeLa cells was obtained, upon depletion of WNK1 kinase or from control cells. Upon pA selection, libraries were generated and sequenced. A duplicate experiment was performed for each sample.
WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription.
Cell line, Subject
View SamplesIn other to assess functional involvement of Klf5 in DR regulation, we made liver-specific Klf5 knockout mice. Ductular reaction upon cholestatic liver injury is severely suppressed in these mice. We conducted RNA-seq analysis on the BECs from control mice and Klf5 LKO mice upon DDC injury to further elucidate the Klf5 functions. Overall design: Single-end RNA-seq of total RNAs extracted from BECs of Klf5 LKO mice upon DDC injury for 1wk
The transcription factor Klf5 is essential for intrahepatic biliary epithelial tissue remodeling after cholestatic liver injury.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells.
Specimen part, Cell line, Treatment
View SamplesSmad2/3 are transcription factors that engage in TGF-beta-induced transcription. We determined and analyzed HepG2 and Hep3B-specific Smad2/3 binding sites by ChIP-chip. We used expression microarrays to compare the Smad2/3 and HNF4alpha binding sites identified by ChIP-chip or ChIP-seq, respectively, to TGF-beta-induced gene expressions.
Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells.
Specimen part, Cell line, Treatment
View SamplesThe pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: Semi-nascent transcriptome measured by chromatin-bound RNA-seq in HeLa cells. Control and PCF11 knock-down (2 biological replicates) and control and PCF11 PAS1 deletion (4 biological replicates).
Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
Specimen part, Subject
View SamplesThe pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in individual zebrafish embryo heads. Two types of mutants: zPCF11 null and zPCF11 with deletion of PAS1. Wild-type (wt, +/+), heterozygous (het, +/-) and homozygous mutant (hom, -/-) embryos were analyzed. Wild-type and heterozygous animals were phenotypically indistinguishable.
Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
Subject
View SamplesThe pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in HeLa cells. Control and PCF11 knock-down (4 biological replicates); control and PCF11 PAS1 deletion clones muA and muB (3 biological replicates); control and additional PCF11 PAS1 deletion clones muC and muD (1 replicate).
Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
Subject
View SamplesPlacental development is a key event in mammalian reproduction and embryogenesis. However, the molecular basis underlying extraembryonic lineage specification and subsequent placental development is not fully understood. Through a genetic screen, we identified Zfp281 as a key factor for extraembryonic development. Disruption of Zfp281 in mice caused severe defects in extraembryonic as well as embryonic tissues. Importantly, Zfp281 was preferentially expressed in the trophoblast stem cell population in an FGF-dependent manner and ensured the expression of genes necessary for placental development. Through the analysis of transcriptome and epigenome, we identified Zfp281 as an important factor to shape the transcriptome of mammalian trophoblast stem cells. Overall design: To study the role of Zfp281 in transcriptional regulation, we performed RNA-seq using mouse and human TS cells. Furthermore, we performed H3K4me3 ChIP-seq and ATAC-seq to reveal the roles of Zfp281 in chromatin regulation.
Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development.
No sample metadata fields
View Samples