This SuperSeries is composed of the SubSeries listed below.
Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice.
Sex, Age, Specimen part
View SamplesBy regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine.
Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice.
Sex, Age, Specimen part
View SamplesBy regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine.
Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice.
Sex, Age, Specimen part
View SamplesIn parallel with the inconsistency in observational studies and chemoprevention trials, the molecular mechanisms by which selenium may affect prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled intervention trial to examine the effects of a short-term intervention with selenized yeast on whole-genome expression profiles in non-malignant prostate tissue. Twenty-three men receiving prostate biopsies were randomly assigned to take 300 g selenized yeast per day (n=12) or placebo (non-selenized yeast, n=11) during a median intervention period of 35 (interquartile range: 31-35) days. Prostate specimens, collected from the transition zone before and after intervention, of 15 participants (n=8 selenium, n=7 placebo) were available for analysis using Affymetrix GeneChip Human 1.0 ST Arrays. Pathway and gene set enrichment analyses revealed that the intervention with selenium resulted in a down-regulated expression of genes involved in signaling pathways related to cellular adhesion, migration, invasion, remodeling and immune responses. Specifically, expression of the well-established epithelial marker E-cadherin was up-regulated, while mesenchymal markers, such as vimentin and fibronectin, were down-regulated after the intervention with selenium. This implies an effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium affected expression of genes involved in wound healing and inflammation, processes which are both related to EMT. In conclusion, our data showed that selenium affected expression of genes implicated in EMT, mainly represented by a change in the direction of the epithelial rather than the mesenchymal phenotype.
A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesDiminishment of colonic health is associated with various age-related pathologies. Calorie restriction (CR) is an efficient strategy to increase healthy lifespan, although underlying mechanisms are not fully elucidated. Here we report the effects of lifelong CR on markers of colonic health in aging mice. We show that 30% energy reduction, as compared to a control (C) and moderate-fat (MF) diet, is associated with attenuated immune-related gene expression and lower levels of bile acids in the colon. Pronounced shifts in microbiota composition, together with lowered plasma levels of interleukin 6, in mice exposed to CR are in line with these findings. Furthermore, expression of genes involved in lipid metabolism was higher upon CR as compared to C and MF, pointing towards efficient regulation of energy metabolism. Switching from CR to an ad libitum MF diet at old age revealed remarkable phenotypic plasticity, although expression of a small subset of genes remained CR-associated. This research demonstrates that CR beneficially affects markers of colonic health in aging mice and as such may attenuate the progressive age-related decline in health.
Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice.
Sex, Specimen part
View Samples