Biological effects of overexpression of miR-146b microRNAs in the A549 human lung cancer cell-line was studied. A549 cells were engineered to express the precursor RNA (pre-miR-146b) that generates the miR-146b microRNAs. Control cells were engineered using the same gene expression plasmid (pLemiR, Open Biosystems) but without the pre-miR-146b insert. The Trans-Lentiviral GIPZ packaging system (Open Biosystems) was used to generate stable transfectant populations of the engineered cells.
Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells.
Disease, Cell line
View SamplesNF1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing FoxF1.
Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling.
Specimen part, Cell line
View SamplesALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onufs nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onufs nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onufs nuclei but not of vulnerable lumbar spinal neurons, or vice versa.
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesExpression response after induction of putative phrenic neuronal determinants in ES cell-derived motor neurons was compared to a pre-determined list of genes over-expressed in FACS-sorted primary.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesExpression response after induction of putative phrenic neuronal determinants in ES cells was compared to a pre-determined list of genes over-expressed in FACS-sorted phrenic cells.
Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.
Specimen part
View SamplesEwings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ, designated as FZ in the data set) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between eSZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.
Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.
Specimen part, Time
View SamplesEwings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the facial zone (FZ) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between FZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.
Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.
Specimen part
View SamplesNF1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing FoxF1. We used microarray to identify direct targets for NF1-C2.
Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1.
Specimen part, Cell line
View SamplesPhosphatidylcholine transfer protein (PC-TP, a.k.a StarD2) is abundantly expressed in liver and is regulated by PPAR. When fed the synthetic PPAR ligand fenofibrate, Pctp-/- mice exhibited altered lipid and glucose homeostasis. Microarray profiling of liver from fenofibrate fed wild type and Pctp-/- mice revealed differential expression of a broad array of metabolic genes, as well as their regulatory transcription factors. Because its expression controlled the transcriptional activities of both PPAR and HNF4 in cell culture, the broader impact of PC-TP on nutrient metabolism is most likely secondary to its role in fatty acid metabolism.
Regulatory role for phosphatidylcholine transfer protein/StarD2 in the metabolic response to peroxisome proliferator activated receptor alpha (PPARalpha).
Sex, Age, Specimen part
View Samples