Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.
Parathyroid hormone regulates fetal-placental mineral homeostasis.
Sex, Specimen part, Treatment
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the arsenite treatment experiment are presented. Experiments on 293S cells +/- arsenite treatment, in 4 biological replicates. On each treatment/replicate biological sample, both a CLIP-seq protocol and an RNA-seq protocol were performed, so these datasets are “paired” in addition to the treatment pairing.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the hippuristanol treatment experiment are presented. Experiments on 293S cells +/- hippuristanol treatment, in 2 biological replicates. Here, for each treatment/replicate sample, an aliquot was used for RNA-seq, and the rest was split into three aliquots to perform 3 parallel CLIP-seq protocols with different antibodies. So, each RNA-seq dataset here corresponds to 3 CLIP-seq datasets.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, RNAseq data from sucrose gradient fractions with arsenite treatment are presented.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesWhen adapting to environmental stress, cells attenuate and reprogram their translational output. In part, these altered translation profiles are established through changes in the interactions between RNA-binding proteins and mRNAs. The Ago2/microRNA machinery has been shown to participate in stress-induced translational upregulation of a particular mRNA, CAT-1; however, a detailed, transcriptome-wide understanding of the involvement of Ago2 in the process has been lacking. Here, we profiled the overall changes in Ago2-mRNA interactions upon arsenite stress by CLIP-seq. Ago2 displayed a significant remodeling of its transcript occupancy, with the majority of 3` UTR and CDS sites exhibiting stronger interaction. Interestingly, target sites that were destined for release from Ago2 upon stress were depleted in miRNA complementarity signatures, suggesting an alternative mode of interaction. To compare the changes in Ago2 binding patterns across transcripts with changes in their translational states, we measured mRNA profiles on ribosome/polysome gradients by RNA-seq. Increased Ago2 occupancy correlated with stronger repression of translation for those mRNAs, as evidenced by a shift toward lighter gradient fractions upon stress, while release of Ago2 was associated with the limited number of transcripts that remained translated. Taken together, these data point to a role for Ago2 and the mammalian microRNAs in mediating the translational component of the stress response. Overall design: In this sub-series, CLIP and RNAseq data from the emetine treatment experiment are presented. Experiments on 293S cells +/- emetine treatment, in 1 biological replicate. Here, for each treatment/replicate sample, an aliquot was used for RNA-seq, and the rest was split into three aliquots to perform 3 parallel CLIP-seq protocols with different antibodies. So, each RNA-seq dataset here corresponds to 3 CLIP-seq datasets.
Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.
Cell line, Treatment, Subject
View SamplesCircuit neuroscience has made great progress by linking neuronal function to marker gene expression, allowing the specific investigation of otherwise indistinguishable neuronal ensembles. Here, we performed next generation sequencing on two functionally and genetically distinct interneuronal populations marked by the expression of protein kinase C d (PKCd) or somatostatin (SST) in the central amygdala (CEA) of mice, which are known to play distinct and sometimes opposing roles in emotion processing. Making their gene expression profile known will aid in forming hypotheses of how different neurotransmitters or psychoactive drugs could alter information processing in these neurons. Overall design: Unchallenged gene expression profile of two different neuronal populations in the central amygdala
Dorsal tegmental dopamine neurons gate associative learning of fear.
Sex, Specimen part, Subject
View SamplesProspective isolation is critical to understand the cellular and molecular aspects of stem cell heterogeneity. Here we identify the cell surface antigen CD9 as a novel positive marker that provides a simple alternative for hematopoietic stem cell-isolation at high purity Overall design: mRNA profiles of LT and ST HSCs
The tetraspanin CD9 affords high-purity capture of all murine hematopoietic stem cells.
Subject
View SamplesType I IFNs are implicated in the pathophysiology of systemic sclerosis (SSc). Recently, a Phase I open-label trial was conducted with an anti-IFNAR1 receptor antibody (anifrolumab) in adult SSc patients. In this study, we aim to assess the downstream effects of anifrolumab and elucidate the role of type I IFN in SSc. Serum proteins and extracellular matrix (ECM) markers were measured in relation to IFN pathway activation status and SSc disease activity. Our results demonstrated a robust overexpression of multiple serum proteins in SSc patients, particularly those with an elevated baseline type I IFN gene signature. Anifrolumab administration was associated with significant downregulation of T cellassociated proteins and upregulation of type III collagen degradation marker. Whole-blood and skin microarray results also indicated the inhibition of T cell receptor and ECMrelated transcripts by anifrolumab. In summary, our study demonstrates suppressive effects of anifrolumab on T cell activation and collagen accumulation through which tissue fibrosis may be reduced in SSc patients. The relationship between these peripheral markers and the clinical response to anifrolumab may be examined in larger double-blind, placebo-controlled trials.
Suppression of T Cell Activation and Collagen Accumulation by an Anti-IFNAR1 mAb, Anifrolumab, in Adult Patients with Systemic Sclerosis.
Specimen part, Disease, Disease stage, Time
View SamplesSkeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy.
Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.
Sex, Specimen part
View SamplesMost tumors are epithelial-derived, and although disruption of polarity and aberrant cellular junction formation is a poor prognosticator in human cancer, the role of polarity determinants in oncogenesis is poorly understood. Using in vivo selection, we identified a mammalian orthologue of the Drosophila polarity regulator crumbs as a gene whose loss of expression promotes tumor progression. Immortal baby mouse kidney epithelial (iBMK) cells selected in vivo to acquire tumorigenicity displayed dramatic repression of crumbs3 (crb3) expression associated with disruption of tight junction formation, apicobasal polarity, and contact-inhibited growth. Restoration of crb3 expression restored junctions, polarity and contact inhibition, while suppressing migration and metastasis. These findings suggest a role for mammalian polarity determinants in suppressing tumorigenesis that may be analogous to the well-studied polarity tumor suppressor mechanisms in Drosophila.
Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression.
No sample metadata fields
View Samples