Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.
Parathyroid hormone regulates fetal-placental mineral homeostasis.
Sex, Specimen part, Treatment
View SamplesWe report high-throughput profiling of gene expression from whole zebrafish ventricles. We profile mRNA in uninjured ventricles and those undergoing regeneration 14 days after genetic ablation. This study provides a framework for understanding transcriptional changes during adult models of regeneration. Overall design: Examination of gene expression in cardiomyocytes under different states of proliferation.
Resolving Heart Regeneration by Replacement Histone Profiling.
No sample metadata fields
View SamplesBy contrast with mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of spared cardiomyocytes. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. While it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. In this study, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin-1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration. Overall design: Deep sequencing of isolated single epicardial cells
Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.
Age, Specimen part, Cell line, Subject
View SamplesWe compared transcriptional profiles of regenerating zebrafish caudal fins following fin amputation with profiles from uninjured zebrafish caudal fins Overall design: Examination of whole fin transcriptional profiles from regenerating fins (2 pools of 10 fins) and uninjured fins (2 pools of 10 fins)
Modulation of tissue repair by regeneration enhancer elements.
No sample metadata fields
View SamplesWe compared transcriptional and chromatin profiles of regenerating zebrafish hearts following genetic ablation with profiles from uninjured zebrafish hearts. Overall design: Examination of whole heart transcriptional profiles from ablated hearts (2 pools of 10 hearts) and uninjured hearts (2 pools of 10 hearts). Examination of differential H3K27Ac marks following genetic ablation of cardiomyocytes (regenerating hearts) and uninjured hearts.
Modulation of tissue repair by regeneration enhancer elements.
No sample metadata fields
View SamplesDevelopmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGF? and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders. Overall design: Expression profiling by high throughput sequencing data; GPL17021 Illumina HiSeq 2500 (Mus musculus)
Conversion of adult endothelium to immunocompetent haematopoietic stem cells.
Specimen part, Subject
View SamplesGene expression changes in 3 human melanoma cell lines were compared to freshly isolated normal primary melanocytes Overall design: Three biological replicates for each melanoma cell line and primary melanocytes were labeled and run Illumina HiSeq2500. The transcriptome of melanocytes was compared to cell line SK-Mel-28, SK-Mel-147 or UACC-62.
Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1.
Specimen part, Subject
View SamplesSafety sciences and the identification chemical hazard have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically- important field of peripheral neurotoxicity is still largely unexplored. Here, a 2-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as functional parameter highly sensitive to disturbances by toxicants was used as endpoint reflecting specific neurotoxicity. The differentiation of cells towards dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants, as well as neurite growth enhancers, were correctly identified. Various classes of chemotherapeutics causing human peripheral neuropathies were identified, while they were missed when tested on human central neurons. The PeriTox-test established here shows the potential of human stem cells for clinically-relevant safety testing of drugs in use and of new emerging candidates.
Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants.
Sex, Specimen part, Cell line
View SamplesPurpose: Asess the transcritpional changes induced upon RAB7 knock-down in melanoma (SK-Mel-28 and UACC-62) and in colon cancer (HCT-116) cell lines. Methods: mRNA profiles of tumor cell lines (SK-Mel-28, UACC-62, HCT-116) stably expressing scrambled shRNA or RAB7 shRNA (harvested at day 3 after lentiviral infection) were generated by deep sequencing, using three biological replicates per condition. The sequence reads that passed quality filters were analyzed with TopHat and Cufflinks. Validation of induced / silenced genes was performed by western blot. Results show a differential impact of RAB7 expression in the transcriptomic profile of melanoma vs non-melanoma cell lines, and support a lineage-specific role of this small GTPase in melanoma. Overall design: Examination of the mRNA profiles RAB7-depleted vs wild type cells, performed in parallel in 3 different tumor cell lines (Melanomas: SK-Mel-28 and UACC-62, Non-melanoma: HCT-116) harvested at day 3 after lentiviral infection.
RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway.
Cell line, Treatment, Subject, Time
View SamplesInvariant natural killer T cells (iNKT) expressing the retinoic acid receptor-related orphan receptor γt (RORγt) and producing IL-17 represent a minor subset of CD1d-restricted iNKT cells (iNKT17) in C57BL/6J (B6) mice. We aimed in this study to define the reasons for their low distribution and the sequence of events accompanying their normal thymic development. We found that RORγt+ iNKT cells have higher proliferation potential and a greater propensity to apoptosis than RORγt- iNKT cells. These cells do not likely reside in the thymus indicating that thymus emigration, and higher apoptosis potential, could contribute to RORγt+ iNKT cell reduced thymic distribution. Ontogeny studies suggest that mature HSAlow RORγt+ iNKT cells might develop through developmental stages defined by a differential expression of CCR6 and CD138 during which RORγt expression and IL-17 production capabilities are progressively acquired. Finally, we found that RORγt+ iNKT cells perceive a strong TCR signal that could contribute to their entry into a specific Th17 like developmental program influencing their survival and migration. Overall, our study proposes a hypothetical thymic developmental sequence for iNKT17 cells, which could be of great use to study molecular mechanisms regulating this developmental program.
Characterization of the developmental landscape of murine RORγt+ iNKT cells.
No sample metadata fields
View Samples