STAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a dimer motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Genes bound weakly by STAT5a and strongly by LSD1/HDAC3 present a STAT5a monomer like motif, and are differentially regulated based on their biological role, genomic binding localization and affinity. STAT5a binding in monomer like motifs was found with increased frequency in promoters, indicating a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein-protein interactions, genomic binding positions-affinities and motifs. Overall design: Mouse pro-B Ba/F3 cells treated with lentiviral vectors expressing short-hairpins to knock-down various genes (STAT5a, STAT5b, LSD1 and HDAC3). All KDs were analysed versus cells treated with lentiviral construct expressing a No-Target short-hairpin at the same condition (either minus [IL3 deprivation for 6h] or plus [IL3 deprivation for 6h and IL3 stimulation for 30min]). Wild-type cells were also generated and compared between the two conditions. All samples contain biological replicates (3-5 depending on the sample).
The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions.
Cell line, Treatment, Subject
View SamplesOligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimer's Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. Overall design: The mouse knockout models have been previously described for each of Ugt8 (Coetzee et al., 1996), Cnp (Lappe-Siefke et al., 2003), and Plp1 (Klugmann et al., 1997). For each of the two conditions studied (control and homozygous knockout mice), five mice of either sex were sacrificed at postnatal day 20 and brains were flashed-frozen until analysis. The frontal cortex (FC) and cerebellum (CBM) were dissected out and individually processed. RNA was isolated using Trizol reagent and processed using Ribo-Zero rRNA removal. RNA-sequencing was performed using the Illumina HiSeq2000 with 100 nucleotide paired-end reads. RNA-sequencing reads were mapped to the mouse genome (mm10, UCSC assembly) using Bowtie (version 2.2.3.0), TopHat (version 2.0.11), and SamTools (version 0.1.19.0) using a read length of 100. Reads were converted to counts at the gene level using HTSeq on the BAM files from TopHat2 using the UCSC known genes data set.
Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease.
Specimen part, Subject
View SamplesRearrangements involving the NUP98 gene resulting in fusions to several partner genes occur in acute myeloid leukemia and myelodysplastic syndromes. This study demonstrates that the second FG repeat domain of the NUP98 moiety of the NUP98-HOXA9 fusion protein is important for its cell immortalization and leukemogenesis activities. We demonstrate that NUP98-HOXA9 interacts with MLL via this FG repeat domain and that, in the absence of MLL, NUP98-HOXA9-induced cell immortalization and leukemogenesis are severely inhibited. Molecular analyses indicate that MLL is important for the recruitment of NUP98-HOXA9 to the HOXA locus and for NUP98-HOXA9-induced HOXA gene expression. Our data indicate that MLL is crucial for NUP98-HOXA9 leukemia initiation.
MLL is essential for NUP98-HOXA9-induced leukemia.
No sample metadata fields
View SamplesRegeneration of fragmented Drosophila imaginal discs occurs in an epimorphic manner, involving local cell proliferation at the wound site. Following disc fragmentation, cells at the wound site activate a restoration program through wound healing, regenerative cell proliferation and repatterning of the tissue. However, the interplay of signaling cascades, driving these early reprogramming steps, is not well understood. Here we profiled the transcriptome of regenerating cells in the early phase within twenty-four hours after wounding. We found that JAK/STAT signaling becomes activated at the wound site and promotes regenerative cell proliferation in cooperation with Wingless (Wg) signaling. In addition, we demonstrated that the expression of Drosophila insulin-like peptide 8 (dilp8), which encodes a paracrine peptide to delay the onset of pupariation, is controlled by JAK/STAT signaling in early regenerating discs. Our findings suggest that JAK/STAT signaling plays a pivotal role in coordinating regenerative disc growth with organismal developmental timing.
During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay.
Sex, Specimen part, Treatment
View SamplesGlioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.
Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators.
Specimen part, Cell line
View SamplesThe closely related transcription factors (TFs), estrogen receptors ER and ER, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing MCF-7 breast cancer cells with ER, ER, or both receptors as a model system to define the basis of differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules.
Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators.
Specimen part, Cell line
View SamplesTruncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (p = 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. Overall design: RNA-seq in NPCs treated with shRNAs targeting CHD8. For controls, NPCs were treated with shRNAs targeting GFP and LacZ. Infection and sequencing was carried out in two separate batches, with one GFP and one LacZ sample in each batch. All samples were sequenced in two technical replicates.
CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors.
No sample metadata fields
View SamplesWe used microarrays to detail the global transcriptional response mediated by ERalpha or ERbeta to the phytoestrogen genistein in the MCF-7 human breast cancer cell model.
Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding.
No sample metadata fields
View SamplesThe MCF-7 were infected with either control adenovirus expressing B-galactosidase (Ad) or adenovirus expressing ERB (AdERbeta) for 72 h. For knockdown of the endogenous ERa in MCF-7 cells, cells were treated with siRNA for 24h (AdERbeta+SiERalpha). Then cells were treated with Veh (0.1% EtOH), 10 nM E2 or 1 uM BEs (botanical extracts) for 24h. Overall design: Duplicate samples run; treatment after knockdown included a control treatment (V), estradiol (E2) or botanical extracts; genistein (Gen), S-equol, liquiritigenin (Liq)
Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens.
No sample metadata fields
View Samples