Differential gene expression profiles were observed in response to Hras in either wild-type or Ppar-beta null primary keratinocytes and differentail gene edxpression profiles by GW0742 were only found in wild-type keratinocytes.
Peroxisome proliferator-activated receptor β/δ cross talks with E2F and attenuates mitosis in HRAS-expressing cells.
Specimen part
View SamplesWe analyzed small RNAs from three mammalian species, and found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length and a specific spatial relationship with the guide piRNAs. Overall design: small RNA-seq of testes lysate (beta-eliminated)
Conserved generation of short products at piRNA loci.
No sample metadata fields
View SamplesThe medial and cardiac lobes of the right lung and whole right lung of (initially) 10-12 week old C57BL/6 mice were transcriptome profiled at days 0, 3, 7, 14, 28 and 56 post left pneumonectomy, with day 0 being pre-pneumonectomy, and an additional day 56 post sham surgery to control for 8 week aging post left pneumonectomy.
Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth.
Sex, Specimen part, Treatment, Time
View SamplesEctopic expression of DNMT3L in Drosophila causes melanotic tumor in the transgenic flies from fifth generation onwards.
DNMT3L enables accumulation and inheritance of epimutations in transgenic Drosophila.
Specimen part
View SamplesThe aim of this study was to determine the changes in gene expression of rice root tips when they came in to contact with a hard layer (60% wax layer). Three categories of root tips were sampled; tips before the hard layer, tips that had come into contact with the hard layer and root tips which had buckled after coming into contact with the hard layer.
A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs.
No sample metadata fields
View SamplesOne critical task in pluripotent reprogramming is to erase the somatic transcriptional program of starting cells. No strategy or theory exists for achieving erasure of somatic gene expression memory. Here, we present a proof-of-principle strategy in which reprogramming to pluripotency is facilitated by small molecules that erase somatic cell transcription memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains dramatically downregulates specific somatic gene expression programs in both naïve and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also resulted in loss of fibroblast morphology early in reprograming. In this study, we experimentally demonstrate a concept for cell fate conversion: facilitating the conversion by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory. Overall design: human BJ cells were treated with JQ1 at 50 nM for 48 hours. Differential expression was compared with DMSO treatment. The same treatments and comparsion were conducted for reprogramming BJ cells, which were transduced with OCT4, SOX2, and KLF4. JQ1iPSC5 is a iPSC (induced pluripotent stem cell) line generated in this study using small molecules JQ1.
Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains.
No sample metadata fields
View SamplesThe MUC1 oncoprotein is aberrantly overexpressed in diverse human malignancies including breast and lung cancer. Although MUC1 modulates the activity of several transcription factors, there is no information regarding the effects of MUC1 on global gene expression patterns and the potential role of MUC1-induced genes in predicting outcome for cancer patients. We have developed an experimental model of MUC1-induced transformation that has identified the activation of gene families involved in oncogenesis, angiogenesis and extracellular matrix remodeling. A set of experimentally-derived MUC1-induced genes associated with tumorigenesis was applied to the analysis of breast and lung adenocarcinoma cancer databases. A 35-gene MUC1-induced tumorigenesis signature (MTS) predicts significant decreases in both disease-free and overall survival in patients with breast (n = 295) and lung (n = 442) cancers. The data demonstrate that the MUC1 oncoprotein contributes to the regulation of genes that are highly predictive of clinical outcome in breast and lung cancer patients.
MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment.
No sample metadata fields
View SamplesDifferential gene expression in RNA isolated from stably-transfected EBERs-negative versus EBERs-positive HK1 cell lines
Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells.
Cell line
View SamplesIdentifying PDEF regulated genes may shed light on the mechanism by which PDEF may induce breast cancer progression. To that purpose, we have used the MCF-7 human breast tumor cell line model to identify PDEF induced genes. Briefly, PDEF expression was down regulated by shRNA in MCF-7 cells and RNA probes from PDEF-down regulated and control MCF-7 cells were used to screen the Affymetrics HG-U133A Gene Chips. This analysis found 62 genes that were induced 2-fold or higher by PDEF. Further analysis of 3 of these genes namely S100A7, CEACAM6 and B7-H4 in primary breast tumors showed CEACAM6 as a frequently elevated and co-exressed gene with PDEF in these tumors.
Prostate derived Ets transcription factor and Carcinoembryonic antigen related cell adhesion molecule 6 constitute a highly active oncogenic axis in breast cancer.
Cell line
View SamplesHippo signalling has been implicated as a key regulator of tissue regeneration. In the intestine, ex vivo organoid cultures model aspects of crypt epithelial regeneration. Therefore in order to uncover the Yap regulated transcriptional programs during crypt regeneration we performed RNA-sequencing of Yap wt and Yap deficient organoids, as well as organoids inducibly expressing Yap. Overall design: Yap loss of function organoids were harvested from Yapfl/fl;VillinCre mice (Yap-/-). In addition, we developed Yap overexpressing organoids by generating a doxycycline-inducible wild-type Yap transgenic line under the control of a Cre driven reverse tetracycline transactivator (rtTA), referred to here as YapTg. Organoids were seeded on day 0 from whole crypts isolated from Yap+/D, YapD/D, YapTg mice and cultured for 24 hours at which time they were harvested for transcriptome analysis by RNAseq.
Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer.
No sample metadata fields
View Samples