Percellome analysis of whole Xenopus embryos at developmental stage 18
Active repression by RARγ signaling is required for vertebrate axial elongation.
Specimen part
View SamplesThis experiment is to identify genes that are regulated by pRb in AC61 cells. AC61 cells were derived from a C-cell adenocarcinoma developed in an Rb+/-N-ras-/- mouse.
Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation.
No sample metadata fields
View SamplesIn order to investigate the function of heme in the regulation of gene expression, we herein examined variations in mRNA levels in ALA-treated cells from control conditions. A comprehensive anal- ysis by RNA sequencing showed marked changes in the expression of various genes. Among the different amounts of mRNA, we identified the novel heme-inducible protein, SRRD. The plant ho- mologue Sensitivity to Red Light Reduced (SRR1) was previously reported to be involved in the regulation of the circadian clock and phytochrome B signaling in Arabidopsis thaliana. We found that SRRD regulated not only heme biosynthesis, but also the expression of clock genes. The involvement of SRRD in the prolif- eration of cells was also demonstrated. Overall design: Examination of ALA-treated versus untreated NIH3T3 cells.
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.
Cell line, Subject
View SamplesGenes related to sleep and wakefulness were evaluated by RNA microarray in patients, including CKD,HD patients and control subjects.
Messenger RNA expression profile of sleep-related genes in peripheral blood cells in patients with chronic kidney disease.
Sex, Specimen part
View SamplesAmmonia is a toxic by-product of metabolism that causes cellular stress. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism that facilitate survival against toxicity have yet to be identified. We demonstrated that hypoxia-inducible factor-1 (HIF-1) is stabilised and activated by ammonia stress. HIF-1 activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation and glutamine-dependent metabolism under ammonia stress in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1 counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1 in biphasic ammonia stress management in cancer stem-like cells. GS facilitates proliferation and HIF-1 contributes to metabolic remodelling in cellular energy usage resulting in attenuated proliferation but conversely promoting cell survival.
Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells.
Specimen part, Cell line
View SamplesObjective: Analyze expression patterns of genes located at linkage region of SPOAN syndrome (11q12-13), in order to identify genes differentially expressed in samples of SPOAN individuals compared to healthy controls.
Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome.
Specimen part
View SamplesTo establish effective multitargeted KRAS pathway therapy, we analyzed mediators of acquired resistance to chronic momelotinib and MEK inhibitor exposure in A549 cells. Since inhibitor resistance was completely reversible after drug withdrawal for several passages, suggesting epigenetic reprogramming, we investigated whole mRNA expression profiles in A549, momelotinib and selumetinib resistant (MSR)-A549 cells and MSR-A549 cells following drug withdrawal for 10 days. In parallel, we also examined mRNA expression profiles of MSR-A549 cells treated with the BET inhibitor JQ1, to identify specific targets regulated by H3K27 acetylation. Overall design: mRNA profile of MSR-A549 cells with or without JQ1 treatment.
Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS.
Subject
View SamplesWe asked whether combining Notch and VEGF blockade would enhance suppression of tumor angiogenesis and growth, using the NGP neuroblastoma model. NGP tumors were engineered to express a Notch1 decoy construct (N1D), which restricts Notch signaling, and then treated with either the anti-VEGF antibody bevacizumab or vehicle. Combining Notch and VEGF blockade led to blood vessel regression, increasing endothelial cell apoptosis and disrupting pericyte coverage of endothelial cells. Combined Notch and VEGF blockade did not affect tumor weight, but did additively reduce tumor viability. Our results indicate that Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis, and show that concurrent blockade disrupts primary tumor vasculature and viability further than inhibition of either pathway alone.
Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis.
Specimen part
View SamplesDuring kidney development segmented epithelia of the nephron derive from progenitor cells in the metanephric mesenchyme after induction by secreted molecules from the ureteric bud. We have identified three distinct inductive activities from a ureteric bud cell line. These include leukemia inhibitory factor (LIF), neutrophil gelatinase-associated lipocalin (NGAL) and an active fraction currently referred to as ANX. Each of these activities induces segmented nephron epithelia in isolated rat metanephric mesenchyme over a time period of 7 days. This study was designed to characterize the temporal sequence of gene expression in the course of the conversion process induced by each of the distinct inducers.
beta-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors.
Time
View SamplesNIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase
A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.
Cell line
View Samples