Mouse skin fibroblasts (MSFs) were obtained from a FASST (Fibroblasts Accelerate Stromal-Supported Tumorigenesis) mouse. This mouse model allows for spatial and temporal control for senescence induction by using a stromal specific Cre-recombinase driven by the pro-collagen-alpha II promoter. The stromal specific Cre activates expression of the p27IRESGFP transgene that is expressed from the ROSA locus. We cultured the MSFs in vitro, induced senescence using 10uM tamoxifen added to the media. Non-senescent cells were treated with equal volume of vehicle alone (ethanol). Upon tamoxifen treatment, cells were moved to a modular incubation chamber and maintained at 3% oxygen at 37 degrees celcius for 12 days total before collection. At the time of collection, cells were trypsynized and pelleted by centrifugation. The cells were lysed using Trysol reagent and RNA was isolated using a RiboPure RNA isolation kit (Ambion). Overall design: For this study, 2 treatment groups were analyzed (non-senescent, EtOH samples and senescent, TAM samples). Each treatment group was performed 3 times for a total of 6 samples for analysis. The gene expression analysis is a comparison of expression in senescent (TAM) vs non-senescent (EtOH) mouse skin fibroblasts.
Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis.
Specimen part, Cell line, Treatment, Subject
View SamplesTo better understand the impact of integrin beta3 signaling in myeloid cells on the tumor microenvironment, we compared the gene expression profiles of FACS isolated GFP+ PyMT-BO1 MFP tumor cells and also M2 TAMs (CD11b+Gr1-F4/80+CD206+) from tumor tissue of WT mice and b3 mice.
Antagonizing Integrin β3 Increases Immunosuppression in Cancer.
Specimen part
View SamplesThe transcription factor Nkx2.5 is required for specification of pharyngeal arch second heart field (SHF) progenitors that contribute to outflow tract (OFT) and right ventricle (RV) formation. Multiple sets of microarray data were analyzed to identify genes that are candidate targets of Nkx2.5 in the second heart field. These sets are: 1) publicly available data for cardiothoracic tissue from E9.5 Nkx2.5 wild-type, heterozygous and homozygous embryos; 2) an analysis of mouse E10.5 pharyngeal arch tissue; 3) an analysis of mouse E12.5 heart tissue; and 4) a temporal analysis of the cardiogenic cell line P19CL6. This combined analysis identified 11 genes (Lrrn1, Elovl2, Safb, Slc39a6, Khdrbs1, Hoxb4, Fez1, Ccdc117, Jarid2, Nrcam, and Enpp3) expressed in SHF-containing pharyngeal arch tissue whose regulation is dependent on Nkx2.5 expression.
Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis.
Specimen part, Cell line
View SamplesPluripotent P19CL6 embryonic carcinoma cells can be differentiated to a cardiac lineage by culture in the presence of DMSO. The goal of this study was to characterize temporal gene expression patterns associated with cardiogenic differentiation. Gene expression analysis was conducted on differentiating P19CL6 cells at several time points following induction with 1% DMSO. Samples were processed for analysis by Affymetrix GeneChip.
Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis.
Cell line
View SamplesWe established a mouse model, in which transcription factor Tcfap2c can be activated in an inducible and reversible manner in somatic tissues, taking advantage of the tetracycline-dependent regulatory system.
Transgenic overexpression of Tcfap2c/AP-2gamma results in liver failure and intestinal dysplasia.
Specimen part
View SamplesIncreased antigen cross-presentation but impaired cross-priming after activation of PPAR is mediated by up-regulation of B7H1
Increased antigen cross-presentation but impaired cross-priming after activation of peroxisome proliferator-activated receptor gamma is mediated by up-regulation of B7H1.
Specimen part
View SamplesRecent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.
Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.
Specimen part
View SamplesWe used full genome microarrays to profile the full lifetime of the mouse placenta from embryonic day 8.5 (e8.5), at the time of chorioallantoic fusion, until postnatal day 0 (P0).
Genomic evolution of the placenta using co-option and duplication and divergence.
Specimen part
View SamplesWe used full genome microarrays to profile the full lifetime of the mouse placenta from embryonic day 8.5 (e8.5), at the time of chorioallantoic fusion, until postnatal day 0 (P0). For these samples, at each stage the fetal placenta and maternal decidual tissues were dissected and profiled separately (See series 1).
Genomic evolution of the placenta using co-option and duplication and divergence.
Specimen part
View SamplesMemory T cells are important for protective immunity against infectious microorganisms. Such protection is achieved by cooperative action of memory T cell populations that differ in their tissue localization and functionality. We report on the identification of the fractalkine receptor CX3CR1 as marker for stratification of memory T cells with cytotoxic effector function from those with proliferative function in both, mice and man. Based on CX3CR1 and CD62L expression levels four distinct memory T cell populations can be distinguished based on their functional properties. Transcriptome and proteome profiling revealed that CX3CR1 expression was superior to CD62L to resolve memory T cell functionality and allowed determination of a core signature of memory T cells with cytotoxic effector function. This identifies a CD62Lhi CX3CR1+ memory T cell population with an identical gene signature to CD62LlowCX3CR1+ effector memory T cells. In lymph nodes, this so far unrecognized CD62LhiCX3CR1+ T cell population shows a distinct migration pattern and anatomic positioning compared to CD62LhiCX3CR1neg TCM. Furthermore, CX3CR1+ memory T cells were scarce or absent during chronic HBV, HCV and HIV infection in man and chronic LCMV infection in mice confirming the value of CX3CR1+ in understanding principles of protective immune memory. Overall design: CD8+ T cells were isolated and directly assessed. After harvesting, cells were immediately lysed in Trizol (Invitrogen) before storage at -80°C for RNA isolation.
Functional classification of memory CD8(+) T cells by CX3CR1 expression.
No sample metadata fields
View Samples