The colonic lamina propria contains a distinct population of Foxp3+ T regulatory cells (Tregs) that modulate responses to commensal microbes. Analysis of gene expression revealed that the transcriptome of colonic Tregs is distinct from splenic and other tissue Tregs. Ror and Helios in colonic Tregs mark distinct populations: Ror+Helios- or Ror-Helios+ Tregs. We uncovered an unanticipated role for Ror, a transcription factor generally considered to be antagonistic to Foxp3. Ror in colonic Tregs accounts for a small but specific part of the colon-specific Treg signature.
MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells.
Sex, Age
View SamplesActivation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-B (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDNS generated by the cGAMP synthase, cGAS. Thus, while CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.
Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesChronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesChronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease
Inflammation-driven carcinogenesis is mediated through STING.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
STING recognition of cytoplasmic DNA instigates cellular defense.
Specimen part, Cell line
View SamplesGene expression analysis of wild type, STING knock-out and STAT1 knock-out Mouse Embryonic Fibroblasts (MEFs) stimulated with 90-mer dsDNA or 90-mer ssDNA. Genes whose expression that are affected by cytosolic DNA in a STING dependent manner will be identified and signaling pathways regulated by STING will be elucidated.
STING recognition of cytoplasmic DNA instigates cellular defense.
Specimen part
View SamplesGene expression analysis of dsDNA90 stimulated human telomerase fibroblasts (hTERT-BJ1) after STING siRNA treatment. Genes whose expression that are affected by cytosolic DNA in a STING dependent manner will be identified and signaling pathways regulated by STING will be elucidated.
STING recognition of cytoplasmic DNA instigates cellular defense.
Specimen part, Cell line
View SamplesGene expression analysis of wild type and STING knock-out Mouse Embryonic Fibroblasts (MEFs) infected with 34.5 deleted HSV1. Genes whose expression that are affected by HSV1 in a STING dependent manner will be identified and signaling pathways regulated by STING will be elucidated.
STING recognition of cytoplasmic DNA instigates cellular defense.
Specimen part
View SamplesThe aim of this study was to investigate the inhibitory effect of TSU68, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor beta (PDGFR) and fibroblast growth factor receptor 1 (FGFR1), on colon cancer liver metastasis and to test the hypothesis that TSU68 modulates the microenvironment in the liver before the formation of metastasis.
TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche.
No sample metadata fields
View Samples